• Title/Summary/Keyword: PI3K pathway

Search Result 367, Processing Time 0.022 seconds

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

The Mechanism of Whole Plant Extract of Viola verecunda on the Proliferation of Dermal Papilla Cells (콩제비꽃 전초 추출물의 모유두세포 증식 기전)

  • Kang, Jung-Il;Seo, Min Jeong;Choi, Youn Kyung;Shin, Su Young;Hwang, Yong;Goh, Jae duk;Yoo, Eun-Sook;Kim, Sang-Cheol;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Proliferation and maintain of dermal papilla during progression of hair-cycle are crucial to the duration of anagen and regulated by diverse signaling pathway such as PI3K/Akt/Wnt/β-catenin pathway. In this study, we investigated the effects and mechanisms of Viola verecunda on dermal papilla cells. Treatment of dermal papilla cells with whole plant extract of V. verecunda resulted in cell proliferation, which was accompanied by up-regulation of cyclin D1, phospho (ser780)-pRB and cdc2 p34, and down-regulation of p27kip1. V. verecunda extract also promoted the levels of phospho (ser473)-Akt and phospho (ser780)-pRB in a time-dependent manner. Inhibition of PI3K/Akt by Wortmannin suppressed progression of cell-cycle, thereby attenuated the increases in proliferation of dermal papilla cells by V. verecunda extract. We further investigated Wnt/β-catenin pathway with respect to the effects of V. verecunda extract on the proliferation of dermal papilla cells. Treatment with V. verecunda extract results in up-regulation of Wnt/β-catenin proteins such as phospho (ser9)-GSKβ, phospho (ser552)-β-catenin and phospho (ser675)-β-catenin. In addition, Wortmannin abrogated V. verecunda extract mediated up-regulation of cdc2 p34 and down-regulation of p27kip1. These finding reveal that the proliferative effect of V. verecunda mediated by alteration of cell-cycle via activating PI3K/Akt/Wnt pathway in dermal papilla cells.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

Resveratrol Induces Apoptosis through PI3K/Akt and p53 Signal Pathway in MDA-MB-231 Breast Cancer Cells (Resveratrol이 MDA-MB-231 유방암 세포에서 PI3K/Akt와 p53 신호경로를 통한 apoptosis 유도)

  • Kwon, Jung-Ki;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Jung, Ji-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.452-459
    • /
    • 2012
  • This study was conducted in order to investigate the effect of resveratrol on the induction of apoptosis in MDA-MB-231 breast cancer cells. The result of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl terazolium bromide (MTT) assay shows that cell viability significantly decreased in a dose and time-dependent manner. 4',6-diamidino-2-phenylindole (DAPI) staining shows significantly increased chromatin condensation in a dose and time-dependent manner. Resveratrol increased the expression of p53, cleaved-caspase-3, and cleaved-caspase-9, whereas the expression of PI3K/Akt decreased in a time-dependent manner. We investigated the in vivo tumor growth inhibitory effect of resveratrol. Tumor volume was significantly decreased in the 50 mg/kg resveratrol-administration group compared to the control group. In the 50 mg/kg treated group. Apoptosis cells were frequently observed by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay. Immunohistochemistry staining shows increased the expression of p53, cytochrome-C, and cleaved-caspase-3 in the 50 mg/kg treated group. These results indicate that resveratrol induced apoptosis through PI3K/Akt and p53 signal pathway in MDA-MB-231 cell.

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell (Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis

  • Yang, Jung-Bo;Quan, Juan-Hua;Kim, Ye-Eun;Rhee, Yun-Ee;Kang, Byung-Hyun;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.371-377
    • /
    • 2015
  • Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in $TNF-{\alpha}$ production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased $TNF-{\alpha}$ production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, $TNF-{\alpha}$ production was significantly decreased compared to the control; however, $TNF-{\alpha}$ reduction patterns were different depending on the type of PI3K/MAPK inhibitors. $TNF-{\alpha}$ production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of $TNF-{\alpha}$ production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

Fibronectin expression is upregulated by PI-3K/Akt activation in tamoxifen-resistant breast cancer cells

  • You, Daeun;Jung, Seung Pil;Jeong, Yisun;Bae, Soo Youn;Lee, Jeong Eon;Kim, Sangmin
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.615-620
    • /
    • 2017
  • Fibronectin (FN) plays important roles in the EMT in a variety of cancer cell types. However, the mechanism by which FN expression is regulated in tamoxifen-resistant (TamR) breast cancer cells has not yet been fully elucidated. Aberrant FN expression was associated with poor prognosis in patients with luminal type A breast cancer. In addition, FN was upregulated in TamR cells. To investigate the mechanism by which FN expression is regulated, we assessed the levels of phosphorylated Akt, JNK, and STAT3 and found that they were all increased in TamR cells. Induction of FN expression was dampened by LY294002 or AKT IV in TamR cells. Furthermore, FN expression was increased by constitutively active (CA)-Akt overexpression in tamoxifen-sensitive MCF7 (TamS) cells and colony formation of TamR cells was blocked by AKT IV treatment. Taken together, these results demonstrate that FN expression is upregulated through the PI-3K/Akt pathway in tamoxifen-resistant breast cancer cells.

Protein Kinase B Inhibits Endostatin-induced Apoptosis in HUVECs

  • Kang, Hee-Young;Shim, Dong-Hwan;Kang, Sang-Sun;Chang, Soo-Ik;Kim, Hak-Yong
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.97-104
    • /
    • 2006
  • Endostatin is a tumor-derived angiogenesis inhibitor, and the endogenous 20 kDa carboxyl-terminal fragment of collagen XVIII. In addition to inhibiting angiogenesis, endostatin inhibits tumor growth and the induction of apoptosis in several endothelial cell types. However, the mechanisms that regulate endostatin-induced apoptotic cell death are unclear. Here, we investigated apoptotic cell death and the underlying regulatory mechanisms elicited of endostatin in human umbilical vein endothelial cells (HUVECs). Endostatin was found to induce typical apoptotic features, such as, chromatin condensation and DNA fragmentation in these cells. Thus, as the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, we investigated whether this pathway could protect cells against endostatin induced apoptosis. It was found that the inhibition of PI3K/PKB significantly increased endostatin-induced apoptosis, and that endostatin-induced cell death is physiologically linked to PKB-mediated cell survival through caspase-8.

Betulinic Acid Stimulates Glucose Uptake through the Activation of PI3K and AMPK in 3T3-L1 Adipocytes (Betulinic acid의 PI3K와 AMPK경로 활성화를 통한 3T3-L1 지방세포에서 포도당 흡수 촉진 효과)

  • Lee, Jung Kyung;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.762-770
    • /
    • 2022
  • Hyperglycemia in type 2 diabetes can be alleviated by promoting cellular glucose uptake. Betulinic acid (3β,-3-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic lupane-type triterpenoid compound. Although there have been studies on the antidiabetic activity of betulinic acid, studies on cellular glucose uptake are lacking. We investigated the effects of betulinic acid on glucose uptake and its mechanism of action in 3T3-L1 adipocytes. Betulinic acid significantly stimulated glucose uptake in 3T3-L1 adipocytes by increasing the phosphorylation of the insulin receptor substrate 1-tyrosine (IRS-1tyr) in the insulin signaling pathway, which in turn stimulated the activation of phosphoinositide 3-kinase (PI3K) and the phosphorylation of protein kinase B (Akt). The activation of PI3K and Akt by betulinic acid translocated glucose transporter 4 to the plasma membrane (PM-GLUT4), thereby increasing the expression of PM-GLUT4 and thus stimulating cellular glucose uptake. Betulinic acid also significantly increased the phosphorylation/activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. The activation of PI3K and AMPK by betulinic acid was confirmed using the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. The increase in glucose uptake induced by betulinic acid was significantly decreased by wortmannin and compound C in the 3T3-L1 adipocytes. These results suggest that betulinic acid stimulates glucose uptake by activating PI3K and AMPK in 3T3-L1 adipocytes.