• Title/Summary/Keyword: PI-Fuzzy Controller

Search Result 303, Processing Time 0.029 seconds

A Fuzzy Ligic Controller for the Swell and Shrink Problems of Nuclear Steam Generators

  • Moon, Byung-Soo;Park, Jae-Chang-;Han, Kwang-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1070-1073
    • /
    • 1993
  • A Fuzzy Logic Controller for handing the swell/shrink problems of nuclear steam generators is designed, implemented and tested on the compact nuclear simulator at Korea Atomic Energy Research Institute. Its performance is found to be better than of the PI controller originally being used. In terms of the total variations for the control actions and for the flow error curve, the ones by the fuzzy controller are found to be less than one third of those by the PI controller.

  • PDF

Fuzzy Pre-Compensated PI Control of Active Filters

  • Singh, Bhim;Singhal, Varun
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • This paper deals with a new and improved control technique for shunt active filters (AF) used for compensating unwanted harmonic currents injected in the mains due to nonlinear varying loads. This work is motivated by the need to find a permanent solution to the rigorous hit and trial method for evaluating system parameters in an indirect control of AF. A fuzzy pre-compensated PI (Proportional-Integral) controller is used to fuzzify the reference DC voltage of AF to the controller input so that the overshoots and undershoots in its DC link voltage are minimized and the settling time is improved. A three-phase diode rectifier with R-L (Resistive-Inductive) load is used as a non-linear load to study the effectiveness of the proposed controller of the AF. Robustness to filter parameter variations, insensitivity to controller parameter variations, and transient response has been taken as performance evaluation parameters. The results are shown through simulations in Matlab using power system block sets to demonstrate the capability of the proposed controller of the AF.

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Improvement of Dynamic Response Characteristics of Parallel PWM Converters Using Fuzzy Logic Controller (퍼지 제어기를 이용한 병렬 PWM 컨버터의 과도응답특성 개선)

  • 민병권;김이훈;김재문;원충연;김규식;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.303-312
    • /
    • 2002
  • In this paper, a fuzzy logic controller(FLC) for parallel operation system of PWM converters with high performances is proposed and a PI controller is also realized to compare with the performances of the proposed FLC. The simulation and experimental results show that performances of the proposed FLC are far more excellent compared with those of PI controller, especially in points of DC voltage transient response characteristics and current control transient response characteristics at step increase of rated load. To verify the superiorities of the proposed FLC and actually apply it in industrial field, Simulation iud experimental results are provided to verify the implemented a PWM converter system with 15kw capacity in paralleled with two 7.5kW PWM converters.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

A study on The Fuzzy Based PID Position controller for Step Motor Drives

  • Kim, Seung-Cheol;Cho, Yong-Sung;Park, Jae-Hyung;Kang, Shin-Chul;Bay, Gyu-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1496-1499
    • /
    • 2005
  • In this paper, we applied step motor drive using a fuzzy logic control based on PID controller. A designed this controller's purpose is improved robust and autonomous characteristic in which the variation of external load affects plant parameter. Therefore, in this paper, using a fuzzy logic control based on PID controller of two fuzzy-PI and fuzzy-D is obtained decremental overshoot and a special response quality.

  • PDF

Reduction of Fuzzy Rules and Membership Functions and Its Application to Fuzzy PI and PD Type Controllers

  • Chopra Seema;Mitra Ranajit;Kumar Vijay
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.438-447
    • /
    • 2006
  • Fuzzy controller's design depends mainly on the rule base and membership functions over the controller's input and output ranges. This paper presents two different approaches to deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. This technique provides a mechanism to obtain the reduced rule set covering the whole input/output space as well as membership functions for each input variable. But it is found that some membership functions projected from different clusters have high degree of similarity. The number of membership functions of each input variable is then reduced using a similarity measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8 rules and number of membership functions to 4 and 6 for input variables (error and change in error) maintaining almost the same level of performance. Simulation on a wide range of linear and nonlinear processes is carried out and results are compared with fuzzy PI and PD type controllers without clustering in terms of several performance measures such as peak overshoot, settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute error (ITAE) and in each case the proposed schemes shows an identical performance.

A Position Control of Induction Motor using Optimized Fuzzy Controller (최적 퍼지제어기를 이용한 유도모터의 위치제어)

  • Choo, Yeon-Gyu;Kang, Shin-Chul;Lee, Chang-Ho;Kim, Jong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.732-735
    • /
    • 2007
  • Recently the control of induction motor for position control has been extensively studied. The representative method is PIDA controller proposed by Jung&Dorf. By designed PIDA controller' parameter had large value. Moreover, this method is very analyze, so that, not adapted controller parameter in disturbance. Besides using generalize fuzzy controller. Because input and output membership function is linguistic type, therefore system response is very slow. So, in this paper we used optimized fuzzy controller. Optimized fuzzy controller is output membership function is unity value. The controller performance was estimated applied to induction motor' position control.

  • PDF

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

A Self-Tuning Fuzzy Speed Control Method for an Induction Motor (벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법)

  • Kim, Dong-Shin;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF