• Title/Summary/Keyword: PI-3K

Search Result 2,262, Processing Time 0.028 seconds

Activation of Phosphatidylinositol 3-kinase(PI3K) is Required for Invasiveness and Motility in H-ras MCE10A Cells

  • Shin, Il-Chung;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.103-103
    • /
    • 2001
  • 인간유방상피세포에서 H-ras가 침윤성과 세포 이동성을 유도한다는 것을 이 전연구에서 밝혔다. Phosphatidylinositol 3-kinase(PI3K)는 세포 이동성에서 중요한 역할을 하는 것으로 보고되고 있다. 본 연구에서 인간유방상피세포인 MCF10A에서 H-ras에 의해 유도된 침윤성에 PI3K가 어떠한 영향을 미치는지 살펴보고자 하였다. PI3K의 활성은 PI3K의 downstream molecule인 Akt의 인산화를 Western blot으로 확인하였다. Akt는 MCF10A, H-ras, N-ras MCF10A 세포에서 같은 정도로 발현되는 반면, 인산화된 Akt는 MCF10A 세포에 비해 H-ras MCF10A 세포와 N-ras MCF10A 세포에서 현저히 높게 나타났다. 이상의 결과로서 H-ras, N-ras 둘 다 PI3K를 활성화시키며, 침윤성과 세포이동성이 없는 N-ras MCF10A 세포에서도 PI3K가 활성화되었으므로, PI3K의 활성은 세포침윤성과 이동성을 유도하는데에 있어서 충분하지는 않음을 말해준다. PI3K의 저해제인 LY294002와 wortmannin을 세포에 처리하였을 때 세포침윤성과 이동성이 유의성 있게 감소되었다. 이상의 결과는 MCF10A 세포의 침윤성과 이동설에 있어서 PI3K의 활성이 충분하지는 않지만 반드시 필요하다는 것을 알 수 있었다.

  • PDF

Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus) (넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구)

  • Jeong, Tae Hyug;Youn, Joo Yeon;Ji, Keunho;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K) plays a central role in cell signaling and leads to cell proliferation, survival, motility, exocytosis, and cytoskeletal rearrangements, as well as specialized cell responses, superoxide production, and cardiac myocyte growth. PI3K is divided into three classes; type I PI3K is preferentially expressed in leukocytes and activated by ${\beta}{\gamma}$ subunits of heterotrimeric G-proteins. In this study, the cDNAs encoding the $PI3K{\gamma}$ gene were isolated from a brain cDNA library constructed using the flounder (Paralichthys olivaceus). The sequence of the isolated $PI3K{\gamma}$ was 1341 bp, encoding 447 amino acids. The nucleotide sequence of the $PI3K{\gamma}$ gene was analyzed with that of other species, including Oreochromis niloticus and Danio rerio, and it turned out to be well conserved during evolution. The $PI3K{\gamma}$ gene was subcloned into the expression vector pET-44a(+), and expressed in the E. coli BL21 (DE3) codon plus cell. The resulting protein was expressed as a fusion protein of approximately 49 kDa containing a C-terminal six-histidine extension that was derived from the expression vector. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to $PI3K{\gamma}$. The binding of wortmannin to $PI3K{\gamma}$, as detected by anti-wortmannin antisera, closely followed the inhibition of the kinase activities. The results obtained from this study will provide a wider base of knowledge on the primary structure and characterization of the $PI3K{\gamma}$ at the molecular level.

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

PMO Theory of Orbital Interaction (Ⅴ). ${\pi}$-${\pi}$ and ${\pi}^{\ast}$-${\pi}^{\ast}$ Orbital Interactions (궤도간 상호작용의 PMO 이론 (제5보). ${\pi}$-${\pi}$${\pi}^{\ast}$-${\pi}^{\ast}$ 궤도간 상호작용)

  • Ik Choon Lee;Ki Yull Yang;Nan Pyo Lee;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 1985
  • PMO expressions for ${\pi}^{\ast}$-${\pi}^{\ast}$ orbital interaction have been derived. Important differences between ${\pi}$-${\pi}$ and ${\pi}^{\ast}$-${\pi}^{\ast}$ interactions predicted by PMO expressions are : (ⅰ) energy splitting in ${\pi}^{\ast}$-${\pi}^{\ast}$ interaction will be greater than that in ${\pi}$-${\pi}$ interaction, (ⅱ) energy change due to interaction will be more destabilizing in ${\pi}^{\ast}$-${\pi}^{\ast}$ than in ${\pi}$-${\pi}$ interaction. These predictions were borne out in experimental data and in results of MO theoretical computations. It was pointed out that both STeO-3G and INDO-LCBO methods underestimate ${\pi}^{\ast}$-${\pi}^{\ast}$ orbital interaction and in order to estimate properly with MO theoretical calculation, use of split valence basis set is required.

  • PDF

Role of p53-dependent PI3K in Radioresistance of Colon Cancer Cells (대장암 세포의 방사선저항성에 대한 p53의존성 PI3K의 역할)

  • Lee, Heui-Kwan;Kim, Jong-Suk;Kwon, Hyoung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.258-262
    • /
    • 2010
  • Radiotherapy is one of the major therapies for cancer treatment. p53 acts as a central mediator of the cellular response to stressful stimuli, such as radiation. Recently it has been known that activation of the phosphatidylinositol-3-kinase (PI3K) pathway is associated with radioresistance. In this study, we investigated whether X-irradiation up-regulates PI3K in a p53-dependent manner in human colon cancer cells. In order to study this phenomenon, we have treated p53-wild type and p53-mutant type HCT116 cells with X-ray. Treatment of wild type HCT116 cells with 8 Gy resulted in a marked increase in PI3K (p85), which paralleled an increase in PTEN, a counterpart of PI3K. However, these effects of X-rays in the p53-mutant cells were not observed. These results suggest that the X-irradiation-induced up-regulation of PI3K/PTEN pathway is p53-dependent.

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

Involvement of Phosphatidylinositol 3-Kinase in the Insulin Signaling in Preimplantation Mouse Embryos (생쥐 착상전 배아의 인슐린 신호전달 과정에 Phosphatidylinositol 3-Kinase의 관련성)

  • Gye, Myung-Chan;Nah, Hee-Young;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A phosphatidylinositol 3-kinase (PI3K) is a upstream component of insulin signaling by which protein synthesis can be stimulated in many systems. To elucidate involvement of PI3K and its downstream mammalian target of rapamycin (mTOR) in the insulin signaling in pleimplantation mouse embryos, 8-cell embryos were cultured to blastocysts in the presence or absence of insulin and/or inhibitor drugs. The number of blastomeres per blastocyst, protein synthesis, and protein phosphorylation were examined. There was significant difference in embryonic development to blastocyst stage and hatching was potentiated by the insulin supplementation. The increase in the mean celt numbers per blastocyst was apparent in the insulin culture. Wortmannin, a PI3K inhibitor and rapamycin, an inhibitor of mTOR abolished the stimulatory effect of insulin on morphological development mitosis and protein synthesis. In autoradiography, phosphoproteins pp22 and pp30 which undergo phosphorylation in response to insulin were identified. Taken together, it can be suggested that PI3K and mTOR engaged in insulin signaling in the mouse embryo 8-cell onward and mediate embryotropic offset of insulin.

  • PDF

Betulinic Acid Stimulates Glucose Uptake through the Activation of PI3K and AMPK in 3T3-L1 Adipocytes (Betulinic acid의 PI3K와 AMPK경로 활성화를 통한 3T3-L1 지방세포에서 포도당 흡수 촉진 효과)

  • Lee, Jung Kyung;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.762-770
    • /
    • 2022
  • Hyperglycemia in type 2 diabetes can be alleviated by promoting cellular glucose uptake. Betulinic acid (3β,-3-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic lupane-type triterpenoid compound. Although there have been studies on the antidiabetic activity of betulinic acid, studies on cellular glucose uptake are lacking. We investigated the effects of betulinic acid on glucose uptake and its mechanism of action in 3T3-L1 adipocytes. Betulinic acid significantly stimulated glucose uptake in 3T3-L1 adipocytes by increasing the phosphorylation of the insulin receptor substrate 1-tyrosine (IRS-1tyr) in the insulin signaling pathway, which in turn stimulated the activation of phosphoinositide 3-kinase (PI3K) and the phosphorylation of protein kinase B (Akt). The activation of PI3K and Akt by betulinic acid translocated glucose transporter 4 to the plasma membrane (PM-GLUT4), thereby increasing the expression of PM-GLUT4 and thus stimulating cellular glucose uptake. Betulinic acid also significantly increased the phosphorylation/activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. The activation of PI3K and AMPK by betulinic acid was confirmed using the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. The increase in glucose uptake induced by betulinic acid was significantly decreased by wortmannin and compound C in the 3T3-L1 adipocytes. These results suggest that betulinic acid stimulates glucose uptake by activating PI3K and AMPK in 3T3-L1 adipocytes.

Pharmacophore Based Screening and Molecular Docking Study of PI3K Inhibitors

  • Rupa, Mottadi;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.41-61
    • /
    • 2016
  • Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Phosphoinositide 3-kinases (PI3Ks) play important role in Non-Small Cell Lung Cancer. PI3Ks constitute a lipid kinase family which modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. Herein, we describe the ligand based pharmacophore combined with molecular docking studies methods to identify new potent PI3K inhibitors. Several pharmacophore models were generated and validated by Guner-Henry scoring Method. The best models were utilized as 3D pharmacophore query to screen against ZINC database (Chemical and Natural) and the retrieved hits were further validated by fitness score, Lipinski's rule of five. Finally four compounds were found to have good potential and they may act as novel lead compounds for PI3K inhibitor designing.

Fucoidan Stimulates Glucose Uptake via the PI3K/AMPK Pathway and Increases Insulin Sensitivity in 3T3-L1 Adipocytes (후코이단의 3T3-L1 지방세포에서 PI3K/AMPK 경로를 통한 포도당 흡수 촉진 및 인슐린 민감성 증진 효과)

  • Lee, Ji Hee;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Brown seaweeds have been shown to decrease blood glucose levels and improve insulin sensitivity previously. In this study, we investigated the effect of fucoidan, a complex polysaccharide derived from brown seaweeds, on glucose uptake to improve insulin resistance, and examined its mechanism of action in 3T3-L1 adipocytes. We observed that fucoidan significantly increased glucose uptake and it was related to an increased expression of plasma membrane-glucose transporter 4 (PM-GLUT4) in 3T3-L1 adipocytes. Fucoidan treatment increased the activation of phosphatidylinositol-3-kinase (PI3K) and the phosphorylation of insulin receptor substrate 1 (IRS1tyr) compared with that of the control cells. Fucoidan also promoted the phosphorylation of Akt and protein kinase C (PKC)-λ/ζ compared to that of the control cells. Moreover, fucoidan significantly upregulated acetyl-CoA-carboxylase (ACC) and adenosine monophosphate - activated protein kinase (AMPK) phosphorylation. As a result, translocation of GLUT4 was significantly enhanced in 3T3-L1 adipocytes, which significantly promoted glucose uptake via the PI3K/AMPK pathways. The elevation of glucose uptake by fucoidan was blocked by inhibitor of PI3K and inhibitor of AMPK in 3T3-L1 adipocytes. These findings indicate that fucoidan might ameliorate glucose uptake through GLUT4 translocation to the plasma membrane by activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes. Fucoidan is thought to be of high material value to diabetes treatments and functional foods.