• Title/Summary/Keyword: PI algorithm

Search Result 547, Processing Time 0.026 seconds

An Auto-tuning Algorithm of PI Controller Using Time Delay Element (시간 지연 요소를 이용한 PI 제어기 자동 동조 알고리즘)

  • Oh, Seung-Rohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.1-5
    • /
    • 2010
  • We propose an algorithm which can classify the system should use a PI controller, which have a weak high frequency attenuation characteristics near the critical frequency. To classify the system, we use a time delay element to calculate a gain attenuation rate near the critical frequency. The proposed algorithm also can design PI controller with the given magnitude margin and phase margin specification. The proposed algorithm uses time delay element and saturation function to identify the one point information in frequency domain. We justify the proposed algorithm via the simulation.

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

PI controller design by stability criterion and Genetic algorithm (안정도 판별법과 유전자 알고리즘에 의한 PI 제어기 설계)

  • Cho, Joon-Ho;Choi, Jung-Nae;Lee, Won-Hyok;Hwang, Hyung-Soo;Park, Min-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2230-2232
    • /
    • 2003
  • One of the important problems in a control system design is the requirement that the system should have adequate relative stability. In this paper, We proposed a tuning algorithm PI controller for first order plus dead time system. It is determined the domain of the PI control parameters by Routh - Hurwitz criterion, and we tune parameters of the PI controller using genetic algorithm. A numerical example is also given to illustrate the method.

  • PDF

Speed Control of Permanent Magnet Brushless DC Motor using Variable Gain PI Controller (가변이득 PI 제어기를 이용한 BLDC 모터의 속도제어)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1234-1239
    • /
    • 2013
  • This paper provides a technical review of speed control using variable gain PI algorithm for BLDC(Brushless DC) motor. Usually the PI control is used in many motor applications, but a general PI control has problems of overshooting and disturbance for response. By the change of PI gain in motor control operation, these problems can be solved. To find the optimized PI gains for BLDC motor control, many control methods have been proposed. In this paper, the control algorithm with a variable PI gain is applied to improve overshooting response in transient region and rapid load disturbance rejection. Fixed gain and variable gain PI controls are compared. The validity of the propose method is verified by experiment.

Design of Fuzzy-PI Controllers for the Gas Turbine System (가스터빈 시스템을 위한 퍼지-PI 제어기의 설계)

  • Kim, Jong-Wook;Kim, Snag-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1013-1021
    • /
    • 2000
  • This paper suggests fuzzy-PI controllers for a heavy-duty gas turbine. The fuzzy-PI controllers are designed to regulate rotor speed and exhaust temperature of the gas turbine. The controller gains are tuned by genetic algorithm(GA). This paper also proposes a new fitness function of GA using a desired output response. The suggested controller is compared with previous controllers via simulations and it is shown that the rotor speed variation of our controller is smaller than those of previous ones.

  • PDF

The Design of PI Controller Using Saturation Function (포화 함수를 이용한 PI 제어기 설계)

  • Oh, Seung-Rohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.102-107
    • /
    • 2008
  • We propose an autotuning algorithm for PI controller with unknown plant. The proposed algorithm uses a saturation function and time delay element as a test signal. Since the integral element of PI controller reduces a phase margin in the closed loop system, the closed loop system could be resulted in unstable with PI controller. To avoid unstable in the closed loop system with PI controller, the proposed algorithm identifies one point information in the 3rd quadrant of Nyquist plot with a time delay element. The proposed method improves an accuracy of one point identified information with one saturation function. We demonstrate a performance of the proposed method via a simulation.

The Design of PI controller using a saturation function in frequency domain (포화함수를 이용한 주파수영역에서의 PI제어기설계)

  • Oh, Seung-Rohk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.326-328
    • /
    • 2009
  • we an autotuning algorithm for PI controller with unknown plant. The proposed algorithm uses a saturation function and time delay element as a test signal. Since the integral element of PI controller reduces a phase margin and amplitude margin in the closed loop system, the closed loop system could be resulted in unstable with PI controller, To avoid unstable in the closed loop system with PI controller, the proposed algorithm identifies one point information in the 3rd quadrant of Nyquist plot with a time delay element. The proposed method improves an accuracy of one point identified information with one saturation function.

  • PDF

A Systematic Engineering Approach to Design the Controller of the Advanced Power Reactor 1400 Feedwater Control System using a Genetic Algorithm

  • Tran, Thanh Cong;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.58-66
    • /
    • 2018
  • This paper represents a systematic approach aimed at improving the performance of the proportional integral (PI) controller for the Advanced Power Reactor (APR) 1400 Feedwater Control System (FWCS). When the performance of the PI controller offers superior control and enhanced robustness, the steam generator (SG) level is properly controlled. This leads to the safe operation and increased the availability of the nuclear power plant. In this paper, a systems engineering approach is used in order to design a novel PI controller for the FWCS. In the reverse engineering stage, the existing FWCS configuration, especially the characteristics of the feedwater controller as well as the feedwater flow path to each SG from the FWCS, were reviewed and analysed. The overall block diagram of the FWCS and the SG was also developed in the reverse engineering process. In the re-engineering stage, the actual design of the feedwater PI controller was carried out using a genetic algorithm (GA). Lastly, in the validation and verification phase, the existing PI controller and the PI controller designed using GA method were simulated in Simulink/Matlab. From the simulation results, the GA-PI controller was found to exhibit greater stability than the current controller of the FWCS.

The Control for the 2-Axis Stabilized Gimbal using the PI-LEAD Algorithm (PI-LEAD 알고리즘을 이용한 2축 안정화 짐벌 시스템 제어)

  • Lee, Jin-Bok;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • Since the nonlinear factors such as friction in a mechanical servo system can't be easily measured nor estimated accurately. Therefore, it is difficult to compensate friction correctly. Friction makes a significant error in a 2-axis stabilized gimbal system and finally fails to reach the ultimate control performance goals. To solve these problems, lots of studies on the control methods applying observer have been performed. However, these methods can be used in specific conditions and are limited to apply them to the accurate 2-axis stabilized gimbal system in military sector. This paper deals with the PI-LEAD algorithm which is modified with a general and robust PID algorithm, proves the effect of the algorithm through modeling and simulation, and verifies the performance by applying the algorithm to the real 2-axis stabilized system. It is verified through the performance test that the PI-LEAD algorithm minimizes the error caused by friction and meets requirements of the accurate servo system.

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.