• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.025 seconds

A Study on Speed Control of Induction Motor using Space Vector PWM (공간벡터 PWM을 이용한 유도전동기의 속도제어에 관한 연구)

  • Kim, Young-Gon;Choi, Jung-Hwan;Lee, Seung-Hwan;Kim, Sung-Nam;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.476-478
    • /
    • 1996
  • This paper is on speed control of induction motor using space vector PWM. Indirect vector control which controls independantly flux and torque current component in order to drive induction motor, is applied for driving motor. Voltage sourced inverter with space vector PWM is used to generate the practically perfect sinusoidal flux density in induction motor. The appropriateness of speed control is proven by appling IP(Integral-proportional) controller which is known to have a good speed response and still to have less overshoot than the now used PI(Proportional-Integral) controller.

  • PDF

Phasor Analysis of Sensorless Vector Control System Model for Induction Motor (유도전동기 센서리스 벡터제어 시스템 모델의 페이저 해석)

  • Lee, H.J.;Hwang, J.H.;Seong, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2015-2017
    • /
    • 1998
  • This paper deals with the design of a field oriented control system model for the high performance induction motor using Matlab with Simulink. The proposed control system model, which is not used the speed and flux sensor, contains IM model, Tranformation, Decoupling, FFOC(Field Flux Orientation Controller), Torque calculator and PI Controller to control speed, torque. Results present the stator and rotor flux phasor trajectory, the startup and transient response of speed, torque and stator current with field oriented control and the response to changes in reference speed with no load. This paper shows that the propose control system is more robust than other vector control system, and suggest the enchanced model, using Matlab with Simulink for the high performance in induction motor control.

  • PDF

Robust Speed Control of Induction Motor Using Load Torque Observer (부하변동에 강인한 유도전동기 속도제어)

  • Park, Rae-Kwan;Hyun, Dong-Scok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.686-688
    • /
    • 1993
  • This paper proposes a robust speed control algorithm of Induction Motor. The main idea of this paper is to compensate the torque component of motor current with load torque observer and feedforward control. The speed response of the conventional PI controller is affected by variation of system parameters. However the proposed system has robust characteristics against the variation of system parameters. The simulation results and experiment prove the validity of proposed algorithm.

  • PDF

The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링)

  • Lee, Chun-Gi;Hwang, Jeong-Won;Lee, Joung-Tae;Yang, Bin;Lim, Dong-Keun;Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

H-infinity controller design for robust speed control against disturbance and model uncertainty of DC motors (외란과 모델 불확실성에 강인한 DC모터의 속도 제어용 H-infinity 제어기 설계)

  • JEONG, Tae-Young;KIM, Dong-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.241-250
    • /
    • 2022
  • This paper describes the design of H-infinity controller for robust control of a DC motor system. The suggested controller can ensure robustness against disturbance and model uncertainty by minimizing H-infinity norm of the transfer function from exogenous input to performance output and applying the small gain theorem. In particular, the controller was designed to reduce the effects of disturbance and model uncertainty simultaneously by formalizing these problems as a mixed sensitivity problem. The validity of the proposed controller was demonstrated by computer simulations and real experiments. Moreover, the effectiveness of the proposed controller was confirmed by comparing its performance with PI controller, which was tested under the same experimental condition as the H-infinity controller.

Speed Control of a Permanent Magnet Synchronous Motor for Steering System Using Fuzzy Algorithm (퍼지 제어 알고리즘을 이용한 차량 조향 장치용 표면 부착형 영구자석 동기 전동기의 속도제어)

  • Ban, Dong-Hoon;Park, Jong-Oh;Lim, Young-Do
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • This paper, we describe the vector control of surface mounted PMSM (Permanent Magnet Synchronous Motor) using the fuzzy controller which is suggested algorithm. In these days, when vehicle is operated or not, whether the road is covered or not, the sensitivity of the steering column is not stable. To make up for it, the PI gain of a steering column controller is adjusted by experience. It becomes the price because it need a lot of sensor. Also it is difficult to implement robust control because we need a lot of parameters for variable road conditions which are the off road, the on road, a low battery voltage, a high battery voltage, a vehicle speed. In this paper, we propose fuzzy controller using the suggested algorithm which suitable for steering system. We test the fuzzy controller with the various condition. We get the good performance of fuzzy controller even if it is nonlinear system. We check a robust the fuzzy controller using the suggested algorithm.

A study on the driver and controller design of the biped robot (이족보행로보트의 구동부 및 제어부의 설계에 관한 연구)

  • Shim, In-Sup;Kim, Ju-Han;Kim, Dong-Jun;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

Speed-Sensorless Speed Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 직류서보전동기의 속도 센서리스 속도제어)

  • Him, Sang-Hoon;Kim, Myung-Joon;Yun, Kwang-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2203-2205
    • /
    • 2003
  • In this thesis, it is a purpose to carry out speed control of DC servo motor without using encoder and the resolver which are speed sensor of DC servo motor and it should use estimate algorithm or observer and must assume a speed in order to control speed sensorless. Therefore, high gain observer was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the speed that assumed done in the thesis. Also, implementation used easy PI controller in speed-controller of DC motor though it was simple. It is compared estimate performance of Luenberger and high gain observer in a way of computer simulation in order to verify performance of the high gain observer which proposed in this thesis, and proved excellency of the high gain observer. And the thesis proved that smooth speed sensorless control of DC servo motor was implemented in invariable driving.

  • PDF

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.