• 제목/요약/키워드: PI Speed controller

검색결과 445건 처리시간 0.207초

The Speed Control of an Induction Motor Based on Neural Networks (뉴럴 네트워크를 이용한 유도 전동기의 속도 제어)

  • Lee, Dong-Bin;Ryu, Chang-Wan;Hong, Dae-Seung;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.516-518
    • /
    • 1999
  • This paper presents an feed-forward neural network design instead PI controller for the speed control of an Induction Motor. The design employs the training strategy with Neural Network Controller(NNC) and Neural Network Emulator(NNE). Emulator identifies the motor by simulating the input and output map. In order to update the weights of the Controller. Emulator supplies the error path to the output stage of the controller using backpropagation algorithm. and then Controller produces an adequate output to the system due to neural networks learning capability. Therefore it becomes adjustable to the system with changing characteristics caused by a load. The speed control based on neural networks for induction motor is implemented by a vector controlled induction motor. The simulation results demonstrate that actual motor speed with neural network system well follows the reference speed minimizing the error and is available to implement on the vector control theory.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Adaptive Control for Speed of Wound Rotor Induction Motor With Slip Energy Recovery

  • Tunyasrirut, Satean;Kanchanatep, Attapol;Ngamwiwit, Jongkol;Furuya, Tadayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.419-422
    • /
    • 1998
  • This paper presents how to design speed control of wound rotor induction motors with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. The problem with speed control by adjusting resistance value in the rotor circuit reduces the efficiency of power, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor, where it recovers loss energy by returning it to the system to improve the efficiency. A new PI control method of adaptive control [1],[13]is applied for the system with cascade type PI controller on the main loop to keep the speed constant and the internal loop to adjust the rotor appropriated current of the load provides the good transient response without overshoot.

  • PDF

Neural Network PI Parameters Self-tuning Simulator for BLDC Motor operation (BLDC 모터 구동을 위한 신경회로망 PI파라미터 자기 동조 시뮬레이터)

  • Bae, E.K.;Kwon, J.D.;Kim, T.W.;Kim, D.K.;Chun, J.Y.;Lee, S.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.759-760
    • /
    • 2006
  • In this paper proposed to Neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of BLDC motor. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment. Built-u-p interface has it's own purpose that even the user who don't have the accurate knowledge of neural network can embody operation characteristic rapidly and easily.

  • PDF

Design of fuzzy digital PI+D controller using simplified indirect inference method (간편 간접추론방법을 이용한 퍼지 디지털 PI+D 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제6권1호
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes the design of fuzzy digital PID controller using a simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous-time linear digital PID controller,. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete-time fuzzy version of the conventional PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated that the proposed method provides better control performance than the one proposed by D. Misir et al.

  • PDF

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

A Novel Method to Suppress Mid-Frequency Vibrations with a High Speed-Loop Gain for PMSM Control

  • Li, Qiong;Xu, Qiang;Huang, Shenghua
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1076-1086
    • /
    • 2016
  • PI controllers are one of the most widely used controllers in industrial control systems due to their simple algorithms and stability. The parameters Kp and Ki determine the performance of the system response. The response is expected to improve by increasing the gain of the PI controller. However, too large a gain will accelerate the speed response and cause vibrations, which is not what is expected. This paper proposes a way to suppress vibrations by detecting the vibration frequency and extracting the vibration signal as a compensation to the speed feedback. Additionally, in order to improve its disturbance rejection ability, a low-order disturbance observer is proposed. This paper also explains the operation principle of the proposed method by analyzing the transfer function and it describes the design of the controller parameters in detail. Simulation and experimental results are provided to verify the merits of the proposed method. These results also show the good performance of the proposed method. It has a rapid response and suppresses vibrations.

Design of Fuzzy Logic Controller for a SRM Variable Speed Drive on Vehicle (차량용 SRM의 가변속 구동을 위한 퍼지 제어기 설계)

  • 송병섭;엄기명;윤용호;원충연;김덕근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2000년도 학술대회논문집
    • /
    • pp.193-198
    • /
    • 2000
  • Switched reluctance motor drives have been finding their applications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. Fuzzy control is basically adaptive and gives robust performance for plant parameter variation. This paper deals with the sped control of switched reluctance motor using fuzzy controller with 7-rule based fuzzy logic. The proposed fuzzy controller is superior to the control performance of the conventional PI controller. The fuzzy controller is implemented by 80C196KC, 16 bit one-chip microcontroller.

  • PDF

A Study on the Variable Speed Control of Induction Motor driven by Fuzzy Inference Techniques (퍼지 기법으로 구동되는 유도 전동기의 가변속 운전에 관한 연구)

  • 송호신;이오걸;이준탁;우정인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제8권1호
    • /
    • pp.46-52
    • /
    • 1994
  • In this paper, we implemented the variable speed controller of an induction motor by the Fuzzy control algorithms, which recently is invoking the remarkable interest. As the fuzzy controller is designed on the base of expert's knowlede and experience, it is difficult to expect the perfect control performance of fuzzy controller. Therefore, the adjustment techniques for optimization of scale factors were presented to design the robust fuzzy controller comparing with conventional PI control the usefullness of proposed fuzzy controller was showed by the experimental results.

  • PDF

THE SPEED CONTROL OF DC SERIER WOUND MOTOR USING DSP (TMS320F240)

  • Bae, Jong-Il;Je, Chang-Woo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.371-376
    • /
    • 2003
  • In general, the electronic forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by speed control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the electronic forklift is demanded the robust drive mode. Some cases of the mode, there are trouble in torque and speed control following slope capacity. The control is sensitive concerning with slope angle and output speed, various control method is studied for stability of speed control. We apply speed controller for the self-tuning using DSP(TMS320F240) as main controller for high speed processor, embody dynamic characteristic of control compared the PI control to the fuzzy control.

  • PDF