• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.024 seconds

A High Speed md High Precision Position Control of a XY Table using a VSC (가변구조 제어기를 이용한 XY 테이블의 고속 고정도 위치제어)

  • 이성훈;김가규;최봉열
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.813-816
    • /
    • 1999
  • In this paper is Proposed a VSC(variable structure controller) for a high-speed and high-precision position control of a XY Table, which is based on the PI type reaching mode. Also the comparative study between the proposed method and the conventional PID controller is presented as well. Designed and tuned under repeated experiments, the proposed method showed a better reasonable performance than PID controller in the aspect of tracking error.

  • PDF

The Controller Design of the Permanent Magnet Synchronous Drive Using a Inverter with Phase Compensator (위상보상기를 가진 인버터로 구동되는 영구자석형 동기전동기의 제어기 설계)

  • 유정웅;우광준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.146-154
    • /
    • 1988
  • The computer simulation of speed and phase control system has been carried out in this study. The load of permanent magnet type synchronous motor is not constant in this system. The cost function method has been used in obtaining the optimal gain of PI controller and the rotor position angle of phase controller has been compensated depending on the load and speed variation. This analysis also shows that the current of d-axis component is zero under the variable a load conditions and the torque per unit current can be maximized.

  • PDF

Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network (퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계)

  • Choi, Sung-Dae;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller (다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

Sensorless Speed Control of Permanent Magnet AC Motor Using Fuzzy Logic Controller (퍼지 제어기를 이용한 영구자석 교류전동기의 센서리스 속도제어)

  • 최성대;고봉운;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.389-394
    • /
    • 2004
  • This paper proposes a speed estimation method using FLC(Fuzzy Logic Controller) in order to realize the speed control of PMAM(Permanent Magnet AC Motor) with no speed sensor. This method uses FLC as a adaptive laws of MRAS(Model Reference Adaptive System) and estimates the rotor speed of PMAM with a difference between the reference model and the adjustable model. Speed control is performed by PI controller with the estimated speed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

Speed Control of a Sinusoidal Type Brushless DC Motor using an Auto-tuning Method (자동동조 기법을 이용한 정현파형 BLDC 전동기의 속도제어)

  • 전인효;노민식;최중경;박승엽
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.41-50
    • /
    • 1999
  • The brushless DC motor is widely being used in unmanned factories for its easy maintenance and characteristics of controllability. In this paper, we designed a speed control servo system of a sinusoidal type bmshless DC motor which has high efficiency and usefulness in the industrial fields. This servo system is realized by a controller which is required for driving motors and a new auto-tuning PI control algorithm. The DSP(Digita1 Signal Processor) is adopted as a main controller and a sensor signal processor owing to its fast computational capability and suitable architecture. Also, the hardware PWnl(Pulse Width Modulation) current controller is implemented to pursue a speed command exactly. By experimental results, it is verified that the speed response is pursued fast after command value and the steady-state response is well converged for command value variation without overshoots.

  • PDF

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.

Sensorless speed control of switched reluctance motor using phase current detection and dwell angle control (상전류 검출 및 도통각 조정을 이용한 SRM 센서리스 속도제어)

  • 신규재;권영안
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.955-957
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia, and high poer rate per unit volume. However, position sensor isessential in SRM in order to synchronize the phase excitation to the rotor position. The position sensors increase the cost of drive system, and tend to reduce system reliability. This paper investigtes the speed control of sensorless SRM. The proposed system consists of position detection circuit, dwell angle controller, digital logic commutator, PI speed controller and 4-phase inverter. The performances in the proposed system are verified through the experiment.

  • PDF

Speed Control of Permanent Magnet Synchronous Motor Using Space voltage Vector PWM (공간전압벡터 PWM 기법을 이용한 영구자석형 동기전동기의 속도제)

  • 윤덕용;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1112-1120
    • /
    • 1994
  • This paper presents a servo control scheme for the surface-mounted permanent-magnet synchronous motor(SPMSM) which essentially uses vector control algorithm. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IGBT module. The proposed scheme is verified through digital simulations and experiments for 2.2kW SPMSM and shows good dynamic performance.

  • PDF

Design of RFNN Controller for high performance Control of SynRM Drive (SynRM 드라이브의 고성능 제어를 위한 RFNN 제어기 설계)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.33-43
    • /
    • 2011
  • Since the fuzzy neural network(FNN) is universal approximators, the development of FNN control systems have also grown rapidly to deal with non-linearities and uncertainties. However, the major drawback of the existing FNNs is that their processor is limited to static problems due to their feedforward network structure. This paper proposes the recurrent FNN(RFNN) for high performance and robust control of SynRM. RFNN is applied to speed controller for SynRM drive and model reference adaptive fuzzy controller(MFC) that combine adaptive fuzzy learning controller(AFLC) and fuzzy logic control(FLC), is applied to current controller. Also, this paper proposes speed estimation algorithm using artificial neural network(ANN). The proposed method is analyzed and compared to conventional PI and FNN controller in various operating condition such as parameter variation, steady and transient states etc.