• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.025 seconds

High Performance Speed Control of IPMSM Drive using Fuzzy-Neuro PI Controller (Fuzzy-Neuro PI 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1009-1010
    • /
    • 2007
  • This paper presents Fuzzy-Neuro PI controller of IPMSM drive using fuzzy and neural-network. In general, PI controller in computer numerically controlled machine process fixed gain. To increase the robustness, fixed gain PI controller, Fuzzy-Neuro PI controller proposes a new method based fuzzy and neural-network. Fuzzy-Neuro PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner.

  • PDF

High Performance Control of IPMSM Drive using Dual PI Controller (Dual PI 제어기를 이용한 IPMSM 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.105-110
    • /
    • 2008
  • This Paper proposes Dual-PI controller for high performance control of IPMSM drive. Input of traditional PI control used speed error, but Dual-PI controller used two input speed error, current error and output is output is f-axis current. Dual-PI controller is Possible both speed control and current control because it used speed error and current error Therefore, dual-PI controller can is reduced current ripple. This paper is made analysis performance of algorithm and proposes result.

  • PDF

The Characteristic of Control Response of BLDC using a Fuzzy PI Controller (퍼지 PI 제어기를 사용한 BLDC 제어 응답특성)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Kim, Duk-Heon;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1978-1983
    • /
    • 2011
  • BLDC motor is used in a wide variety of industrial and servo applications. Its features and advantages mainly consist in high value of torque/inertia ratio, high efficiency with speed range and high dynamic performance. This paper deals with the speed control of a trapezoidal type brushless DC motor using Fuzzy PI controller. The conventional PI controller has been widely used in industrial applications. If we select a optimal PI control gain, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant and is basically adaptive and gives robust performance for plant parameter variation. Therefore the combinations of conventional PI controller and fuzzy controller seem to be very effective. This paper deals with PI controller with 4-rule based fuzzy controller. The proposed fuzzy PI controller increases the control performance of the conventional PI controller. Simulation and experimental results show that fuzzy PI controller has a good robustness regarding the improper tuned PI controller.

High Performance Speed Control of IPMSM using Neural Network PI (신경회로망 PI를 이용한 IPMSM의 고성능 속도제어)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.315-320
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fired gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Speed Control of a Vector Controlled Induction Motor using Fuzzy-PI controller (퍼지-PI 제어기법을 이용한 유도전동기의 벡터제어)

  • Lee, Dong-Bin;Ryu, Chang-Wan;Hong, Dae-Seung;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2464-2466
    • /
    • 2000
  • When linear PI controller is used in speed control of induction motor, there happen some weaks which is very difficult to find optimal control gain at time of changing speed and load. In this paper, Fuzzy system incorporated with PI controller is proposed in order to that defects. PI gain is calculated by theoretical basis and fuzzy control is translated human expert's knowledge and experiences into rules numerically. Also it modifies and compensates PI gains in realtime. As comparing the motor characteristics of proposed fuzzy-PI speed controller to PI speed controller of a Vector controlled induction motor system in the increasing load torque and speed change during start and stop, The simulation results show robust and good performance.

  • PDF

Vector Control of Induction Machine with Fuzzy-PI Controller (퍼지-PI 제어기를 이용한 유도전동기 벡터제어)

  • Park, Gun-Tae;Kim, Jae-Hyung;Cha, Duk-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1157-1159
    • /
    • 2001
  • The Induction motor Vector Control with PI controller has been widely used in industrial application. But PI control difficult in dealing with dynamic speed control, parameter variations, and load disturbances. Therefore, in this paper propose speed control of a induction motor using the PI controller with fuzzy controller. The proposed fuzzy PI controller increases the control performance of the PI controller. Simulation results show that fuzzy PI controller has a good robustness regarding the improper tuned PI controller.

  • PDF

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Speed Control of DC Motors Using Inverse Dynamics (역동력학을 이용한 DC 모터의 속도제어)

  • 김병만;손영득;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.97-102
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and the PI controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system in characterized by a nonlinear equation with coulomb friction. The PI controller regulates the error between the set-point and the system output which may be caused by modeling error, variations of parameters and disturbances. The output which may be caused by modeling error, variations of parameters and disturbances. The parameters of the model and the PI controller are adjusted offlinely by a genetic algorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller.

  • PDF

Speed Control of IPMSM Drive using NNPI Controller (NNPI 제어기를 이용한 IPMSM 드라이브의 속도 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.65-73
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.