• Title/Summary/Keyword: PI Speed controller

Search Result 445, Processing Time 0.026 seconds

High Performance Control of SynRM Drive using Space Vector PWM of FAM-PI (FAM-PI의 공간벡터 PWM을 이용한 SynRM 드라이브의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.119-121
    • /
    • 2008
  • This paper is proposed a high Performance speed control of the synchronous reluctance motor through the SV-PWM(Space Vector Pulse Width Modulation) of FAM-PI(Fuzzy Adaptive Mechanism-PI). SV-PWM is controlled using FAM-PI control. SV-PWM can be maximum used maximum do link voltage and is excellent control method due to characteristic to reducing harmonic more than others. Fuzzy control has a advantage which can be robustly controlled. FAM-PI controller is changed fixed gain of PI controller using fuzzy adaptive mechanism(FAM) to match operating condition. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

A Study on Speed Control of the Switched Reluctance Motor using Fuzzy PI Controller (퍼지 PI 제어기를 사용한 스위치드 리럭턴스 전동기의 속도제어에 관한 연구)

  • Ryoo, Hong-Je;Kang, Wook;Kim, Hak-Sung;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.165-168
    • /
    • 1994
  • The paper deals with the fuzzy PI control of a switched reluctance motor drive. Fuzzy algorithm based on linguistic rules describing the operator's control strategy is applied to speed control of the SRM. Simulation and experimental results show that performance of the furry PI controller is superior to that of conventional PI controller. In particular the robustness of the system is improved.

  • PDF

Design of Nonlinear PI Controller for velocity Control of IM (유도전동기 속도제어를 위한 비선형 비례적분 제어기 설계)

  • Oh, Tae-Seok;Choi, Joon-Bae;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.47-49
    • /
    • 2005
  • This paper presents a robust speed control method of induction motors(IM) using a Non-linear PI controller(NPI), NPI is high gain controller in region of small error, and low gain controller in region of large error. so in steady state, system will be robust against variation of load torque. The simulation and experiment results confirm the validity of proposed control scheme.

  • PDF

Design of Nonlinear PI Controller for velocity Control of Induction Motor (유도전동기 속도제어를 위한 비선형 비례적분 제어기 설계)

  • Oh, Tae-Seok;Kim, Il-Hwan;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.227-231
    • /
    • 2006
  • This paper presents a robust speed control method of induction motors(IM) using a Non-linear PI controller(NPI). NPI is high gain controller in region of small error, and low gain controller in region of large error. So in steady state, system will be robust against variation of load torque. The simulation and experiment results confirm the validity of proposed control scheme.

  • PDF

Two-Degree-of-Freedom Speed Control of Two-Mass System using Optimal Pole Assignment Method (최적 극배치 기법을 이용한 2관성 공진계의 2자유도 속도제어)

  • Jeon, Don-Su;Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.18-25
    • /
    • 2000
  • In the two-mass servo system driving a load through a flexible shaft, a shaft torsional vibration is often generated. PI controller has been generally used is speed control of such system because of the simplicity of structure and related theory. This paper presents the inertia ratio of the PI servo control system which can be designed by using optimal pole assignment method is fixed. Therefore, it's difficult to obtain the desired control characteristics for different systems only by PI control algorithm. To solve this problems the two-mass speed control system with PID controller is designed by using pole assignment method and an optimum PID parameters are derived by evaluating ITAE(Integral of time multiplied by the absolute error) performance index. But this design method has some problems due to a trade-off between the fast command following property and the attenuation of disturbances and vibrations. In this paper, 2-DOF PID control method which satisfies the command following property, the reduction of overshoot and the property of disturbance rejection at the same time is proposed. This is a practical speed controller using the desired value filter and the feedforward gain. From several simulations, it's clarified that the proposed 2-DOF PID controller is useful for the two-mass system, in comparison with the conventional PID controller.

  • PDF

Implementation of Self-Tuning Fuzzy Control System for Speed Control of an Induction Motor

  • Shin, Song-Ho;Jin, Shim-Young;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • In this paper, we implemented the variable fuzzy speed controller of an IM(induction motor) using the fuzzy control algorithms. Specially, we proposed a self-tuning technique of scale factors which could make easily the fuzzy speed controller optimize. Comparing with the conventional PI speed controller, the dynamic performances of a proposed fuzzy controller such as the reaching time, the maximum overshoot and the robustness against load disturbance were substantially improved.

  • PDF

Performance Enhancement of Tension Controller for the Yarn Manufacturing Process (실 제조공정을 위한 장력제어기의 성능 개선)

  • Kwak, Young-Shin;Lim, Hoon;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2054-2060
    • /
    • 2008
  • This paper aims at the performance enhancement of tension controller for the yarn manufacturing process. The tension controller is required to keep the tension constant while the yarn is manufactured by a draw and twist machine, which is essential and critical for good quality production of yarn, steel, paper, etc. This paper proposes a linear model of tension control plant to develop a precise tension control system, which is derived by the close observation of the conventional mathematical model of motor driving and tension control systems. It is shown by experiments that the proposed control system precisely maintains the tension constant within the error bound of 0.05% while the conventional PI controller has about 0.2% error. The control performance of the system has been compared to that of conventional PI control not only for constant speed control but also for transient speed control experiments.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

A Study on Speed Control by means of voltage·current model complex flux estimator (유도전동기의 전압·전류 모델 합성 자속 추정기에 의한 속도제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Song Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5416-5426
    • /
    • 2012
  • This study uses the algorithm which estimates the magnetic flux using different models in the low speed driving area and the high speed driving area by the voltage-current model synthesis magnetic flux Estimator and, from this result, estimates the magnetic flux angle to achieve the stable speed control through all the areas from the low speed to the high speed drive. In particular, the current change and the magnetic flux change under variable load were estimated in real time in the low speed area and this made the control characteristic improved in the low speed area. According to this, even under variable load, the more stable simulation and experiment could have been completed using PI current controller and PI flux controller in all the areas. As a result, the outstanding speed control characteristic has been achieved.

Speed-Sensorless Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 센서없는 직류서보전동기의 속도 제어)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.583-590
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a high gain obserber. It was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the estimated speed signal. Also, PI controller was used in speed controller. In order to verify the performance of the high gain observer which is proposed in this paper, it is compared estimate performance of Luenberger Observer and High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with high gain observer in the speed control of DC servo motor.