• Title/Summary/Keyword: PI Current control

Search Result 416, Processing Time 0.024 seconds

Design of Current and Speed Controller for DC Motor Drive System Using dSPACE System (dSPACE 시스템을 이용한 직류 전동기 구동 시스템의 전류 및 속도 제어기 설계)

  • Ji Jun-Keun;Lee Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.338-343
    • /
    • 2006
  • In this paper, design of current and speed controller for DC motor drive system using dSPACE 1104 system is introduced. Current and speed controller is designed and implemented using MATLAB/SIMULINK program simply and easily, and speed control response of DC motor can be advanced. Current and speed control of DC motor is carried in DSP control board using dSPACE system. Speed feedback is processed through QEP using pulse encorder as speed sensor, and current feedback is processed through A/D converter using hall sensor as current sensor. Controller is designed to PI current controler and PI speed controller. Current and speed response is verified through simulations and experiments.

  • PDF

Circulating Current Control of a Modular Multi-level Converter(MMC)-HVDC System based on VPI(Vector-PI) Control for DC Power Network (DC 전력망 구축을 위한 VPI 제어 기반 MMC-HVDC 시스템의 순환전류 제어 기법)

  • Kim, Si-Hwan;Lee, June-Sun;Cho, Young-Pyo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.263-269
    • /
    • 2017
  • This paper proposes a novel circulating current control method for an MMC-HVDC system based on Vector PI control. The method can suppress second-order harmonics of the circulating currents under balanced and unbalanced grid conditions. The proposed method is robust to grid frequency variation. The effectiveness of the proposed method is verified through frequency response and time domain simulation.

Design of stationary reference frame current and disturbance rejection control algorithms for a grid connected inverter (계통 연계형 인버터의 정지좌표전류제어 및 외란제거 제어알고리즘 설계)

  • Kim, Seonghyeon;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.154-160
    • /
    • 2020
  • This paper presents a grid current control algorithm for a grid connected inverter (GCI) system in a stationary reference frame. When a Proportional Integral (PI) controller at a stationary reference frame is used in a GCI system, steady state error and phase lags are presented because AC signals are controlled at a stationary reference frame. In this paper, a feedforward controller is applied to the PI controller to compensate the steady state error and phase lags by improving command tracking performance. In addition, disturbance rejection control is applied to the PI controller to protect the GCI system by eliminating disturbance, grid voltage in a GCI system, when a grid fault such as line-to-line fault, happens. The proposed GCI current control algorithm is analyzed in a frequency domain and a simulation model of the proposed GCI current control system is developed for verification of the performance.

Implementation of PI Controllers with the FPGA

  • Watjanathepin, Napat;Eawsakul, Nitipat;Puangpool, Manoon;Namahoot, Alongon;Yimman, Surapun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1028-1031
    • /
    • 2003
  • The implementation of PI controller with the FPGA is for controlling the speed of DC motor in the digital system. FPGA is assigned to 1. Outer speed control loop. The signal from the speed comparison will be in the PI controlling form transfer function of Direct Form I or PI Parallel Form. 2.Inner current control loop. The signal from the current comparison will be converted into switching function in sliding mode condition. Its output will be a controller of DC motor in the next step. The result from using FPGA will be close to the value of simulation in the analog control system. The sampling rate 40 kHz and 16 bit of 2's complement data are defined in this presentation.

  • PDF

Design of Fuzzy PI Controller for Variable Speed Drive of Switched Reluctance Motor (SRM의 가변속 구동을 위한 퍼지 PI 제어기 설계)

  • Yoon, Yong-Ho;Park, Jun-Suk;Song, Sang-Hoon;Won, Chung-Yuen;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1529-1535
    • /
    • 2012
  • This paper presents the application algorithm for speed control of Switched Reluctance Motor. The conventional PI controller has been widely used in industrial applications. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. The proposed fuzzy logic modifier increases the control performance of conventional PI controller. Simulation and experimental results show that the proposed fuzzy control method was superior to the conventional PI controller in the respect of system performance. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM.

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

A.C. servo motor current control parameter measurement strategy using the three phase inverter driver (3상 인버터 구동기를 이용하는 교류 서보전동기의 전류제어 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2023
  • This paper propose the method that measure the main system parameters for current control of a.c. motor adopting the vector control technique. The automatical method that tuning PI control gains for current control of servo motors are used frequently through the information of main system parameters, wire resistance and inductance. In this study, the techniques to measure these two system parameters through the control of 3-phase inverter are presented. These control and measuring method are implemented by measuring output phase current obtained as a results of the step current control using simple proportional feedback input. Moreover, this method use freewheeling current of inverter at special switching mode for measuring inductance. This analytic strategy is could measure and calculate the system parameters without the complex measurement algorithm and new additional measuring circuits. That is could measure the total resistance and total inductance including wiring resistance and conduction resistance of switching devices using real driving circuits to control the motors.

Low Speed Servo System for Brushless Motor (브러시리스 전동기의 저속 서어보 시스템)

  • Lee, Woon-Young;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper proposes a servo control system of brushless motor at a low and high speed range. The control system is composed of the PI controller for high-speed control and the modified PI controller for low-speed control and the current controller using the hysteresis current control PWM method. The speed control performance is shown by the computer simulation.

  • PDF

PI-CCC Based Switched Reluctance Generator Applications for Wind Power Generation Using MATLAB/SIMULINK

  • Kaliyappan, Kannan;Padmanabhan, Sutha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.230-237
    • /
    • 2013
  • This paper presents a novel nonlinear model of Switched Reluctance Generator (SRG) based on wind Energy Conversion system. Closed loop control with based Proportional Integrator current Chopping Control machine model is used. A Power converter in SRG can be controlled by using PI-CCC proposed model, and can be produced maximum power efficiency and minimize the ripple contents in the output of SRG. A second power converter namely PI based controlled PWM Inverter is used to interface the machine to the Grid. An effective control technique for the inverter, based on the pulse width modulation (PWM) scheme, has been developed to make the line voltage needs less power switching devices and each pair of turbine the generated active power starts increasing smoothly. This proposed control scheme feasibility and validity are simulated on SIMULINK/SIM POWER SYSTEMS only.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.