• Title/Summary/Keyword: PI Current control

Search Result 416, Processing Time 0.024 seconds

Sensorless vector control for super-high speed PMSM drive

  • Bae Bon-Ho;Sul Seung-Ki;Kwon Jeong-Hyeck;Shin Jong-Sub
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.773-778
    • /
    • 2001
  • This paper describes the implementation of the vector control schemes for a variable-speed 131kW PMSM (Permanent Magnet Synchronous Motor) in super-high speed application. The vector control with synchronous reference frame current regulator has been implemented with the challenging requirements such as the extremely low stator inductance$(28^{\mu}H)$, the high dc link voltage(600V) and the high excitation frequency(1.2kHz). Because the conventional position sensor is not reliable in super-high speed, a vector control scheme without any position sensor has been proposed. The proposed sensorless algorithm is implemented by processing the output voltage of the PI current regulator, and hence the structure is simple and the estimated speed is robust to the measurement noise. The experimental system has been built and the proposed control has been implemented and evaluated. The test result, up to the speed of 60,000 r/min, shows the validity of the proposed control.

  • PDF

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

Maximum Torque Control of SynRM Drive with AIPI (AIPI에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.16-28
    • /
    • 2010
  • This paper proposes maximum torque control of SynRM drive using artificial intelligent(AI)PI and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal axis current for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled AIPI and ANN controller and the operating characteristics controlled by maximum torque control are examined in detail.

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Jeong, Yu-Seok;Son, Young-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.21-26
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI-controller for a single-phase inverter system that is robust against load changes. In this Paper, we regard the output voltage changes due to various loads as disturbances of the control system. Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystem of Matlab Simuink. Compared to a simple PI-control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

Fast Response and Versatility in Digitally Controlled Rolling Mill DC Drives (고성능, 다기능의 Rolling Mill DC전동기 제어 시스템 개발)

  • Kim, K.H.;Cho, W.J.;Park, I.Y.;Song, S.H.;Park, K.W.;Choi, C.H.;Sul, S.K.;Ji, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.595-602
    • /
    • 1994
  • PERISTOR-3000 loaded with 32 bit DSP(Digital Signal Processor) is a technically advanced versatile dc motor controller in applications with very high requirements for rapid response, control accuracy and reliability. The current controller of PERISTOR-3000 is of the predictive type and gives fast control with both discontinuous and continuous current compared to the conventional PI current control. The speed controller gain is compensated to improve response behavior. PERISTOR-3000 communicates with its host computer, POSTAR-3200, or any IBM or compatible PC and can be controlled. Dedicated monitoring system for MMI is introduced.

  • PDF

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

Vector Control of SPMSM Using MATLAB/SIMULINK & dSPACE 1104 System (MATLAB/SIMULINK와 dSPACE 1104 시스템을 이용한 표면 부착형 영구자석 동기전동기 벡터제어)

  • Lee, Yong-Seok;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.317-326
    • /
    • 2008
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. PI controller is used for speed control and decoupling PI controller is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Experiments were carried out to examine validity of the proposed vector control implementation.

An Implementation of Smart Gardening using Raspberry pi and MQTT (라즈베리파이와 MQTT를 이용한 스마트 가드닝 구현)

  • Hwang, Kitae;Park, Heyjin;Kim, Jisu;Lee, Taeyun;Jung, Inhwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.151-157
    • /
    • 2018
  • This paper presents an implementation of a smart plant pot which can supply light and water automatically according to the result of detection on current temperature, humidity and illumination, and deliver the images of the plant realtime by using a camera installed in the pot. We designed a container of the plant pot divided into five layers, printed each of them with a 3D printer, and then assembled them. Inside of the container, we installed sensors, a pump, and a camera. We developed an Android application so that the user can control the plant pot and monitor its state. In communication between the Android application and the Raspberry Pi, MQTT protocol was utilized.

Design of Fuzzy Control for High Performance of Induduction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 퍼지제어기의 설계)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1179-1181
    • /
    • 2001
  • For high performance induction motor drives such as mill drives, elevator, spindle drive, NC and so on, smart speed controls is usually required, that requires a precise current control. This paper is proposes design of fuzzy controller which makes use of the output voltage of the space vector PWM inverter. Also, proposes the performance fuzzy controller for high performance vector control of induction motor drive system. The performance of a fuzzy controller is compared with that of an PI controller in an internal loop. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

The Study on Switch Temperature of IPMSM Driving System using Predictive Current Control (예측전류제어를 적용한 IPMSM 구동 시스템의 스위치 온도에 대한 연구)

  • Jang, Young-Hee;Won, Il-Kwon;Kim, Do-Yun;Hwang, Jun-Ha;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.520-521
    • /
    • 2015
  • 본 논문은 벡터제어 기반의 IPMSM 구동 시스템에서 순시 토크 제어 시 전류제어기법에 따른 스위치의 온도특성에 관하여 기술하였다. 전류제어 기법으로는 예측전류제어기법과 기존의 PI(Proportional Integral) 제어기 기반의 SVPWM을 각각 적용하였고, 순시 토크 제어에 따른 스위치 발열량을 비교 분석하였다.

  • PDF