• Title/Summary/Keyword: PI/PR current control

Search Result 14, Processing Time 0.022 seconds

New Method of SVPWM Implementation Using Single Carrier Wave and Comparision of PI/PR Current Control for the Vienna Converter (비엔나 컨버터를 위한 단일 반송파를 이용한 새로운 방식의 SVPWM 구현과 PI/PR 전류제어기의 비교)

  • Cho, Nam-Su;Ji, Jun-Keun;Lee, Tae-Won;Yun, Bong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.522-532
    • /
    • 2017
  • In this paper, a new method of SVPWM implementation for 3-Phase 3-Leg 3-Level AC/DC converter known as the Vienna converter is proposed. Also the performances of PI and PR controller used in AC input current controller are compared. To verify the proposed method, PSIM, a power electronics simulation program, is utilized. The performances of the proposed new method and the two existing methods are compared through simulation and experiment. Also PI and PR controller in AC input current controller are compared through 10[kW] Vienna converter system.

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Capacitance reduction method for single-phase PWM converters using the 3rd harmonic injection and PR controller. (3차 고조파 주입과 PR 제어기를 이용한 단상 PWM 컨버터의 커패시터 용량 저감 기법)

  • Kim, Gyu-Dong;Yang, Hyun-Suk;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.1-2
    • /
    • 2013
  • In this paper, we inject input currents having $3^{rd}$ harmonic to reduce the capacitance of DC link capacitors in single-phase converters. If the input current with third harmonic is injected, the required capacitance can be reduced by minimizing the difference between the input and output power. To control the input current, instead of PI control done in rotating frame, PR controller is used with the proposed separate current control method for fundamental and $3^{rd}$ harmonic components. The validity of the proposed method has been demonstrated by simulation results.

  • PDF

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Instantaneous Current PR Control Method of Single-phase PWM Converter for High Speed Train (고속전철용 단상 PWM 컨버터의 순시 전류 PR 제어 기법)

  • Lee, Heon-Su;Cho, Sung-Joon;Jeong, Man-Kyu;Lee, Kwang-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.231-232
    • /
    • 2014
  • 본 논문은 특정 주파수 대역에서 큰 이득을 갖는 PR 제어기를 이용한 단상 PWM 컨버터의 전류 제어 기법에 대해 제안한다. 고속전철 주전력변환장치는 단상 PWM 컨버터와 3상 인버터로 구성되며, 단상 PWM 컨버터는 단위 역률 제어와 가선전류 고조파 저감을 위하여 빠른 동특성을 갖는 순시 전류 제어 방법이 필요하다. 일반적으로 순시 전류 제어를 위해서 사용되는 동기 좌표계 PI 제어기는 연산 량이 증가하고, 정지 좌표계 PI 제어기는 정상상태 오차가 발생하는 단점이 있다. 본 논문에서는 이러한 단점을 보완할 수 있는 순시 전류 제어 방법을 시뮬레이션과 시험을 통하여 검증하였다.

  • PDF

Development and design of single-phase uninterruptible power supply (단상 UPS 제어기 설계 및 개발)

  • Kim, Hyung-Seop;You, Eun-Sik;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.203-204
    • /
    • 2014
  • In this paper, single-phase uninterruptible power supply design method is presented. In this control scheme, input current, output current and output voltage are used. For voltage control PR controller is used and that for current controller is PI controller. The gains for controllers are sought by the classical method for determining gains. Throughout simulations the performance of single-phase UPS is verified.

  • PDF

Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

  • Han, Yang;Shen, Pan;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.297-309
    • /
    • 2016
  • Grid-connected inverters (GCIs) with an LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion is amplified significantly under highly distorted grid conditions. This paper proposes a synchronous reference frame equivalent proportional-integral (SRF-EPI) controller in the αβ stationary frame using the parallel virtual resistance-based active damping (PVR-AD) strategy for grid-interfaced distributed generation (DG) systems to suppress LCL resonance. Although both a proportional-resonant (PR) controller in the αβ stationary frame and a PI controller in the dq synchronous frame achieve zero steady-state error, the amplitude- and phase-frequency characteristics differ greatly from each other except for the reference tracking at the fundamental frequency. Therefore, an accurate SRF-EPI controller in the αβ stationary frame is established to achieve precise tracking accuracy. Moreover, the robustness, the harmonic rejection capability, and the influence of the control delay are investigated by the Nyquist stability criterion when the PVR-based AD method is adopted. Furthermore, grid voltage feed-forward and multiple PR controllers are integrated into the current loop to mitigate the current distortion introduced by the grid background distortion. In addition, the parameters design guidelines are presented to show the effectiveness of the proposed strategy. Finally, simulation and experimental results are provided to validate the feasibility of the proposed control approach.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.