• Title/Summary/Keyword: PHM(Prognostics and Health Management)

Search Result 35, Processing Time 0.028 seconds

Feature Extraction for Bearing Prognostics based on Frequency Energy (베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출)

  • Kim, Seokgoo;Choi, Joo-Ho;An, Dawn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.128-139
    • /
    • 2017
  • Railway is one of the public transportation systems along with shipping and aviation. With the recent introduction of high speed train, its proportion is increasing rapidly, which results in the higher risk of catastrophic failures. The wheel bearing to support the train is one of the important components requiring higher reliability and safety in this aspect. Recently, many studies have been made under the name of prognostics and health management (PHM), for the purpose of fault diagnosis and failure prognosis of the bearing under operation. Among them, the most important step is to extract a feature that represents the fault status properly and is useful for accurate remaining life prediction. However, the conventional features have shown some limitations that make them less useful since they fluctuate over time even after the signal de-noising or do not show a distinct pattern of degradation which lack the monotonic trend over the cycles. In this study, a new method for feature extraction is proposed based on the observation of relative frequency energy shifting over the cycles, which is then converted into the feature using the information entropy. In order to demonstrate the method, traditional and new features are generated and compared using the bearing data named FEMTO which was provided by the FEMTO-ST institute for IEEE 2012 PHM Data Challenge competition.

Feature Extraction for Bearing Prognostics using Weighted Correlation Coefficient (상관계수 가중치를 이용한 베어링 수명예측 특징신호 추출)

  • Kim, Seokgoo;Lime, Chaeyoung;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • Bearing is an essential component in many rotary machineries. To prevent its unpredicted failures and undesired downtime cost, many researches have been made in the field of Prognostics and Health Management(PHM), in which the key issue is to establish a proper feature reflecting its current health state properly at the early stage. However, conventional features have shown some limitations that make them less useful for early diagnostics and prognostics because it tends to increase abruptly at the end of life. This paper proposes a new feature extraction method using the envelope analysis and weighted sum with correlation coefficient. The developed method is demonstrated using the IMS bearing data given by NASA Ames Prognostics Data Repository. Results by the proposed feature are compared with those by conventional approach.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

인공지능을 이용한 공학시스템 상태진단 및 예지

  • Yun, Byeong-Dong;Hwang, Tae-Wan;Jo, Su-Ho;Lee, Dong-Gi;Na, Gyu-Min
    • Journal of the KSME
    • /
    • v.57 no.3
    • /
    • pp.38-41
    • /
    • 2017
  • 이 글에서는 인공지능을 이용한 공학시스템 고장진단 및 예지기술(PHM: Prognostics and Health Management)의 개념을 소개하고, 실제 적용 사례를 제시한다.

  • PDF

Development of Load Profile Monitoring System Based on Cloud Computing in Automotive (클라우드 컴퓨팅 기반의 자동차 부하정보 모니터링 시스템 개발)

  • Cho, Hwee;Kim, Ki-Tae;Jang, Yun-Hee;Kim, Seung-Hwan;Kim, Jun-Su;Park, Keoun-Young;Jang, Joong-Soon;Kim, Jong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.573-588
    • /
    • 2015
  • Purpose: For improving result of estimated remaining useful life in Prognostics and Health Management (PHM), a system which is able to consider a lot of environment and load data is required. Method: A load profile monitoring system was presented based on cloud computing for gathering and processing raw data which is included environment and load data. Result: Users can access results of load profile information on the Internet. The developed system provides information which consists of distribution of load data, basic statistics, etc. Conclusion: We developed the load profile monitoring system for considering much environment and load data. This system has advantages such as improving accessibility through smart device, reducing cost, and covering various conditions.

Deep-Learning based PHM Embedded System Using Noise·Vibration (소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템)

  • Lee, Se-Hoon;Sin, Bo-Bae;Kim, Ye-Ji;Kim, Ji-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

CNN based Actuator Fault Cause Classification System Using Noise (CNN 기반의 소음을 이용한 원동 구동장치 고장 원인 분류 시스템)

  • Lee, Se-Hoon;Kim, Ji-Seong;Shin, Bo-Bae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.7-8
    • /
    • 2018
  • 본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.

  • PDF

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology (PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용)

  • Wang, Haitao;Min, Byung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • In recent years, with the rapid development of large and medium-sized urban rail transit in China, the total operating mileage of high-speed railway and the total number of EMUs(Electric Multiple Units) are rising. The system complexity of high-speed EMU is constantly increasing, which puts forward higher requirements for the safety of equipment and the efficiency of maintenance.At present, the maintenance mode of high-speed EMU in China still adopts the post maintenance method based on planned maintenance and fault maintenance, which leads to insufficient or excessive maintenance, reduces the efficiency of equipment fault handling, and increases the maintenance cost. Based on the intelligent operation and maintenance technology of PHM(prognostics and health management). This thesis builds an integrated PHM platform of "vehicle system-communication system-ground system" by integrating multi-source heterogeneous data of different scenarios of high-speed EMU, and combines the equipment fault mechanism with artificial intelligence algorithms to build a fault prediction model for traction motors of high-speed EMU.Reliable fault prediction and accurate maintenance shall be carried out in advance to ensure safe and efficient operation of high-speed EMU.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.