• Title/Summary/Keyword: PHC

Search Result 271, Processing Time 0.023 seconds

Development of an All-in-one Attachment-based PHC Pile Head Cutting Robot Prototype (All-in-one 어태치먼트 기반 PHC 파일 원커팅 두부정리 자동화 로봇의 프로토타입 개발)

  • Yeom, Dong-Jun;Park, Ye seul;Kim, Jun Sang;Kim, Young Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The primary objective of this study is to develop a prototype of all-in-one attachment-based PHC pile head cutting robot that improves the conventional work in safety, productivity, and quality. For this, the following research works are conducted sequentially; 1)literature review, 2)development of an all-in-one attachment-based PHC pile head cutting robot prototype, 3)performance evaluation of each device, 4)economic analysis of an automated method. As a result, PHC pile cutting level sensing device, PHC pile cutting device, PHC pile handling device are developed. Futhermore, working process of an automated method is developed based on result of performance evaluation. According to the economic analysis result, the cost of the automated method was 21.37% less than that of the conventional method, and the economic efficiency was also superior(ROR 215.44%, Break-even Point 5.52month). It is expected that conclusions for future improvements are used in the development of the all-in-one attachment-based PHC pile head cutting robot to practical use.

Technical Feasibility and Field Applicability Analysis of an All-in-one Attachment-based PHC Pile Head Cutting Robot (PHC 파일 원커팅 두부정리 자동화 로봇의 기술적 타당성 및 현장 적용성 분석)

  • Yeom, Dong-Jun;Kim, Jun-Sang;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.98-106
    • /
    • 2020
  • Conventional method of PHC pile head cutting work has several challenges with regard to safety, convenience, productivity, and quality. To address such problems, a prototype of the all-in-one attachment-based PHC pile cutting robot is developed(Yeom, 2018). The Primary objective of this study are to develop a final prototype of all-in-one attachment-based PHC pile cutting robot and to analyze technical feasibility and field applicability of final prototype. According to the technical feasibility and field applicability analysis result, at least 74.2% of the respondents are selected positive answer about technical feasibility of the final prototype, at least 66.6% of the respondents are selected positive answer about field applicability of the final prototype. It is expected that when deployed onsite, the final prototype can not only increase the practical use but also improvement the work safety and productivity of work at the PHC pile head cutting job site.

A Study on Flexural Behavior of Composite PHC pile with CT Structural Steel (PHC파일과 CT형강을 합성한 합성형 벽체파일의 휨거동에 대한 연구)

  • Mha, Ho-Seong;Won, Jeong-Hun;Cho, Hyo-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.233-243
    • /
    • 2012
  • This study verifies the structural capacity of the composite PHC pile (Pretensioned spun high-strength concrete) consisting of a PHC pile and two CT structural steels. Four full-scale specimens are fabricated and the experimental tests were performed to investigate the flexural behaviors of the composite PHC piles. The composite PHC pile can enhance both the structural capacity and functional convenience, since the web of CT structural steel with holes in the web acts as a shear connector (referred to as the perfobond rib), which can connect concrete and steel. All specimens exhibited flexural failure and the ultimate strengths were larger than the anticipated design strength according to the design standard. Thus, the composite PHC pile can be applicable to wall structures with sufficient strength. In addition, it seems that the web of the CT structural steel with holes performs its role as shear connectors.

A Study on the Waterproofing Performance of Waterproofing Methods for PHC-W Earth Retaining Wall Based on Pressure Chamber Test (PHC-W 흙막이 공법의 차수방안에 관한 차수성능확인을 위한 모형 압력 수조 실험 연구)

  • Choi, Yongkyu;Johannes, Jeanette Odelia;Yun, Daehee;Kim, Chae min;Jeon, Byeong Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.115-125
    • /
    • 2017
  • PHC-W earth retaining wall could be constructed continuously. Various retaining wall methods such as C.I.P. etc. method require separate waterproof method. However, the PHC-W retaining wall method prevents leakage of groundwater by inserting a waterproofing material at connection part between 2 PHC piles. In this study, the experimental study on 3 waterproofing method for PHC-W retaining wall was conducted at the model pressure chamber. In the method using textile with 1-liquid type and 2-liquid type urethane, rapid leak occurred at the pressure of 120 kPa and 140 kPa or more. In the method of textile with grouting, rapid leak occurred at the pressure of 120 kPa or more, however, in this method, the rapid leakage happened at the top part and the bottom part reinforced with urethane.

Problem and Improvement Measure of PHC Pile Construction (PHC파일 시공관리 문제점 및 개선방안)

  • Park, Tae-Kyu;Lee, Jung-Chul;Lee, Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.344-348
    • /
    • 2008
  • During the last few years, the use of Pre-tensioned spun High strength Concrete(PHC) pile has been gradually increased in many construction sites such as super high-rise and large building construction. there is almost no specific code and/or standard described in the specifications to check verticality for Pre-tensioned Spun High Strength Concrete pile installation process. The most commonly used method for the vortical PHC pile installation is a naked-eye measurement or water level measurement conducted by assistant crew in the construction sites. And recent analysis results of the pile cutting work revealed that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is very labor intensive work, thus requiring a large amount of additional time, costs, and efforts. The main objective of the research is to analize problems and to improvement. measure of PHC Pile Construction. The improvement measure present to the main problem with survey and discussion.

  • PDF

A Study on the Behavior of PHC-W Retaining Wall Method Based on the Numerical Analysis Results (수치해석 결과를 이용한 PHC-W흙막이공법의 거동에 관한 연구)

  • Choi, Jeong Pyo;Jin, Hong Min;Kim, Chea Min;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.5-15
    • /
    • 2017
  • PHC-W retaining wall method is one of the economical retaining wall methods. PHC-W pile used in PHC-W retaining wall method has special shape with flat surfaces so that the PHW-C retaining wall, with overlapped piles, shows outstanding vertical control and impermeability. In order to evaluate two types of retaining walls, numerical analysis were performed. The selection of cases depended on N values of the ground and ground properties, and two types of PHC-W retaining walls (defined as type A and B) were constructed. For a case that consists of inorganic clay and sand with less than 30 of N value, the maximum excavation depths for type A and B were respectively 10.5 m and 11.0 m. At the other case of which N value is above 30, the depths were 17.0 m and 19.5 m. From the results, it was found that maximum excavation depth, horizontal displacement, and safety factor for flexural strength of the wall were influenced by ground properties.

Applicability Evaluation of PHC Pile to Replace Myanmar Local Use Piles (PHC 말뚝의 미얀마 현지 사용말뚝 대체 적용 가능성 평가)

  • Ko, Hyo Jin;Kim, Hyun Woo;Park, Yong Kyu;Yoon, Ki Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.198-199
    • /
    • 2017
  • In this paper, the applicability of PHC piles to replace Myanmar local piles were evaluated. In Myanmar, based on the size of the building, foundation design and field applications are carried out using bored pile and square pile. As a result of the analysis, the application of PHC pile is more economical than conventional bored pile or square pile which was applied in the high rise (17-story) and middle story (12-story) buildings. However, in the low - rise (8-story) building, the application of the existing square piles was found to be more economical than PHC pile.

  • PDF

Structural Modeling Experiments and Field Adaption Evaluation of Steel Cap for Performance Development of PHC Pile (PHC Pile 두부 성능개선을 위한 파일캡의 구조모델시험 및 현장 적용성 평가)

  • Kwon, Hyuk-Joon;An, Seon-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.630-633
    • /
    • 2006
  • In this study, we concerned the steel cap and head part arrangement of PHC pile structure to complement existing construction process which have the defects such as highly hazardous circumstance for safety concerns and retard a term of works. The steel cap developed for supplement the stiffness between extend foundation and contact section of PHC pile that is based on structural theory. The experiments have been performed to evaluate the characteristics of behavior between head part of PHC pile using steel cap and extend foundation.

  • PDF

The Study on Moldability and Mix Characteristic of IGCC Slag Aggregate as PHC-Pile (석탄 가스화 복합발전(IGCC) 슬래그잔골재의 PHC파일 성형성 및 배합특성에 관한 연구)

  • Park, Yong Kyu;Ko, Hyo Jin;Yoon, Gi Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.273-274
    • /
    • 2018
  • When IGCC Slag(CGS) aggregate was used as PHC-Pile, the moldability was lowered as the mixing ratio increased. concrete mix design. Also the mix characteristics increased the use of AD depending on the usage rate, however, require detailed consideration.

  • PDF

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.