• Title/Summary/Keyword: PHC

Search Result 271, Processing Time 0.021 seconds

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

Connection Resistance of Mechanical Joint using Connection plate for Improvement of Connectivity between PHC piles (PHC파일간 연결 시공성 개선 이음판형 기계적 연결부의 연결저항)

  • Ahn, Jin-Hee;Moon, Hong-duk;Ha, Min-Gyun;Cho, Kwang-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.25-32
    • /
    • 2019
  • Welded joints and mechanical joints using bolt connection have been used as a pile-to-pile connecting method for PHC piles. These PHC pile joint methods may have difficulty in securing connecting quality and connecting performance in PHC pile joining process. Therefore, this study proposes a non-welded connection plate type mechanical PHC pile joint to improve the disadvantages of existing PHC pile connection methods and to secure the connection performance of PHC pile joint. Its connection performance was evaluated from nonlinear FE analysis and loading tests for actual PHC piles with suggested pile joints. From nonlinear FE analysis for the proposed PHC pile joint, it was evaluated to have sufficient connection performance under flexural, compressive, tensile, shear, and eccentric compressive load condition. PHC piles connected by the suggested connection plate type mechanical PHC pile joint show that they show stable linear behaviors for the crack moment and the flexural moment level of the PHC pile. Therefore, the proposed a non-welded connection plate type mechanical PHC pile joint can secure sufficient connection performance in PHC pile.

Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate (고강도 콘크리트 말뚝과 기초판 접합부의 최적 철근보강량 산정)

  • Park, Jong-Bae;Sim, Young-Jong;Chun, Young-Soo;Park, Seong-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Method of protruding steel bar embedded in PHC pile for connecting with foundation plate is an intermediate form of fixed and hinged connection and has often been used in architectural structures such as apartment complex. However, mechanical properties of this method have not been proved and its construction process is not simple. In this study, therefore, by analyzing previous research and by considering ratio of steel bar and concrete in PHC pile, which is minimum reinforcement of rebar, the newly optimized method of reinforcing joint of PHC pile and foundation plate is suggested with respect to PHC pile type (PHC 450, PHC 500, and PHC 600). To assess mechanical properties (ultimate tensile and shear strength) of joint of PHC pile and foundation plate, full scale experimental tests are performed. As a result, all cases are satisfied with required design criteria and can be practically applied. Our results indicate that reduction of rebar reinforcement compared to previous method would lead cost saving in PHC pile construction.

A Study on Estimation of End Bearing Capacity of a PHC-W Pile in Building Underground Additional Wall Using the PHC-W Earth Retaining Wall (PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝의 선단지지력 산정에 관한 연구)

  • Kim, Chea Min;Yun, Daehee;Lee, Chang Uk;Johannes, Jeanette Odelia;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.5-16
    • /
    • 2019
  • With the recent concentration of urban populations, the constructions of large structures are increasing, along with the development of foundations for large structures. PHC Piles have been used in many structures ever since Japanese introduced the technology at the end of the 20th century. Recently, many studies on the use of the PHC Pile have been carried out as earth retaining using the merits of PHC piles. In this study, static axial compression tests were conducted on the PHC-W piles constructed as column-type in building underground additional wall using the PHC-W earth retaining wall. The end bearing capacity of pile was calculated using the axial load transfer measurement that was obtained from the static axial compression test result. Since end bearing capacity of the PHC-W pile embedded in weathered rock showed a different behaviour from the conventional PHC pile, the calculation method of end bearing capacity for column-type PHC-W piles would be proposed. The unit ultimate end bearing equation proposed for single and group PHC-W pile embedded in weathered rock is $q_b=13.3N_b$ and $q_b=6.8N_b$.

Comparison of Splices between Bolts and Welding Spliced PHC Piles (볼트 수직이음 PHC말뚝와 용접이음 PHC말뚝의 이음부 거동 비교)

  • Kim, Myunghak;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.93-103
    • /
    • 2018
  • Behaviors of splices between bolts and welding spliced PHC piles using the tensile strength test were analyzed. The bolts spliced PHC piles, which were tightened over $200N{\cdot}m$ tightening torque, showed straight V shaped line at splices at the lowest 20 N load. Both sides of PHC piles stayed straight, so the full section of bolts spliced piles did not show the unifying behavior, which was the most important performance requirement as pile. Other bolts spliced PHC piles, tightened with $20N{\cdot}m$ loosening torque, also showed the same straight V shaped line at splices for each step of loading. The full section of bolts spliced piles did not return to the initial position after each step of unloading and did not show the elastic material behavior. The splices quality of bolts spliced piles is much lower than that of welding spliced piles with respect to displacement of splices during each step of loadings, residual displacements during each step of unloadings, and failure loads. Results showed that bolts spliced PHC piles, tightened with both over $200N{\cdot}m$ and as low as $20N{\cdot}m$ torque, fell short of performance requirements of spliced PHC pile.

Study(III) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - The Proper Use of Long-term Allowable Compressive Load of PHC Piles by Analyzing Quality Test and Product Specifications Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(III) - 품질 성능 검사 자료 및 성능 제원 표 분석을 통한 PHC말뚝의 장기허용압축하중 성능의 올바른 활용 -)

  • Kim, Chae Min;Yun, Dae Hee;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.15-28
    • /
    • 2019
  • Long-term allowable compressive Loads of PHC piles were analyzed based on qualification tests results by 17 small and medium PHC pile producing companies and product specifications by 6 major and 17 small and medium PHC pile producing companies. At the present stage, an average long-term allowable compressive load of PHC pile was designed at 70% level from current design data, and safety factor of 4.0 was applied to long-term allowable compressive loads of PHC pile despite of its excellent quality. Most quality standards of PHC pile are specified at KS F 4306. But compressive strength test method of spun concrete is specified at KS F 2454. As a result of analyzing quality test data supplied by each manufacturer, all quality test results showed higher performances than standard values. Therefore, it was considered that the capacity of PHC pile can be used up to the maximum allowable compressive load of PHC pile when PHC pile is designed.

End Bearing Capacity of Pile Tip-enlarged PHC Piles in Weathered Rock (풍화암에 근입된 선단확장형 PHC 말뚝의 선단지지력)

  • Yoo, Chung-Sik;Heo, Kab-Soo;Song, Ki-Yong;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.23-37
    • /
    • 2007
  • Recently a concept of pile-tip enlarged PHC pile (Ext-PHC pile), for use in the auger-drilled construction method, has been developed and is being implemented in practice. A series of field axial load tests on both PHC and Ext-PHC piles were conducted at an experimental site. In addition, a parametric study on a number of influencing factors was made using a validated finite element model. The field axial load tests indicated an enhanced load-settlement characteristics for the Ext-PHC piles compared with the PHC piles, giving approximately 50% increase in the end bearing capacity. Also found in the results of the parametric study was that the increase in the end bearing capacity of Ext-PHC piles slightly varies with the mechanical properties of supporting ground as well as pile length, in the range of 1.25 to 1.4 time that of PHC. Overall, the results of the field tests as well as the numerical study confirmed that the end bearing capacity of PHC pile can be improved by the concept of.Ext-PHC pile.

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

A Study on Performance Improvement of a PHC-W Pile for PHC-W Retaining Wall (PHC-W 흙막이용 PHC-W말뚝의 성능개선에 관한 연구)

  • Kim, Chae Min;Kim, Sung Su;Jeon, Byeong Han;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • Various earth retaining wall methods were used on the domestic construction sites and a cast in place pile (C.I.P) method was mostly applied at deep excavation. Because of a lot of shortcomings in the C.I.P method, a new method using PHC-W earth retaining wall was developed. The earth retaining wall method using PHC-W piles has a lot of advantages including that it is safer than other earth retaining wall methods due to uniform quality and high rigidity. PHC-W was designed to effectively resist lateral earth pressure by alternating cross section of PHC pile. And increment of bending moment and shear strength were verified through KS F 4306 tests, and were increased by 42% and 98% more than KS standards.

Study(II) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Improvement Measures of Current Design Method by Analyzing Current Design Data for Prebored PHC Piles - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(II) - 설계 사례 분석을 통한 매입 PHC말뚝의 설계 개선 방향 -)

  • Yea, Geu Guwen;Yun, Dae Hee;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.31-42
    • /
    • 2019
  • A total of 73 pile design data for prebored PHC piles was analyzed to study the current design method. Based on the design data, a ratio of skin friction to total capacity from the pile design data was about 20~53%. Such low ratio of skin friction to total capacity tends to underestimate skin friction. Considering this tendency, the current design method should be improved. Also, an average design efficiency of PHC pile capacity was 70% and an average design efficiency for bearing capacity of soil or weathered rock was 80%, which shows slightly higher value than the former. This is probably due to the fact that the allowable bearing capacity is estimated to be equal to or slightly higher than the design load. Hence, the allowable bearing capacity should be estimated to be higher than the long-term allowable compressive force of the PHC pile. In the current design method, skin friction is calculated to be about 2.2 times lower than end bearing. The current design method for prebored PHC piles applied foreign design methods without any verification of applicability to the domestic soil or rock condition. Therefore, the current design method for prebored PHC piles should be improved.