• Title/Summary/Keyword: PHC말뚝

Search Result 136, Processing Time 0.022 seconds

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

PHC말뚝의 경제성에 대한 연구

  • 임성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.06a
    • /
    • pp.57-86
    • /
    • 1992
  • 본 연구에서는 기존의 PC말뚝과 PHC말뚝의 시공성과 지지력에 대한 비교확인 시험의 결과를 근거로 하여 PHC말뚝의 시공상의 장점, 특성 및 경제성을 파악하였으며, SIP공법에 의하여 PHC말뚝을 사용시 기존 PC말뚝이나 강관말뚝보다 경제성이 우수함을 확인하였다. 또한 PHC말뚝은 압축강도와 지지혁이 기존 PC말뚝보다 높을 뿐만아니라 강관말뚝과 같이 용접이음이 가능하고 말뚝의 심도가 깊은 경우에도 강관말뚝과의 대체시공이 가능하여 PHC말뚝의 성능을 극대화할 수 있는 적절한 항타장비를 사용하는 경우에는 혁신적인 원가절감이 가능함을 확인할 수 있다.

  • PDF

Comparison of Splices between Bolts and Welding Spliced PHC Piles (볼트 수직이음 PHC말뚝와 용접이음 PHC말뚝의 이음부 거동 비교)

  • Kim, Myunghak;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.93-103
    • /
    • 2018
  • Behaviors of splices between bolts and welding spliced PHC piles using the tensile strength test were analyzed. The bolts spliced PHC piles, which were tightened over $200N{\cdot}m$ tightening torque, showed straight V shaped line at splices at the lowest 20 N load. Both sides of PHC piles stayed straight, so the full section of bolts spliced piles did not show the unifying behavior, which was the most important performance requirement as pile. Other bolts spliced PHC piles, tightened with $20N{\cdot}m$ loosening torque, also showed the same straight V shaped line at splices for each step of loading. The full section of bolts spliced piles did not return to the initial position after each step of unloading and did not show the elastic material behavior. The splices quality of bolts spliced piles is much lower than that of welding spliced piles with respect to displacement of splices during each step of loadings, residual displacements during each step of unloadings, and failure loads. Results showed that bolts spliced PHC piles, tightened with both over $200N{\cdot}m$ and as low as $20N{\cdot}m$ torque, fell short of performance requirements of spliced PHC pile.

Investigation for Possible Practical Applicability of Open-Ended PHC Pile (개단 고강도 콘크리트(PHC) 말뚝의 실용성 검토)

  • Paik, Kyu Ho;Lee, Seung Rae;Park, Hyoun Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.965-975
    • /
    • 1994
  • Opening the tip of a PHC pile, under a constant driving energy, can result in an increment of penetration depth due to the decrement of driving resistance. Therefore, the bearing capacity of an open-ended PHC pile may become larger than that of a closed-ended PHC pile by virtue of the increased embedded length. However, two main problems can be caused by opening the end of PHC pile. First problem is the variation of bearing capacity by opening the pile tip, and the second one is whether the tip of an open-ended PHC pile will be failured by a high pressure developed by the soil plug. In this study, model pile tests in calibration chamber were performed to investigate the practicability of open-ended PHC pile in view of both the pile bearing capacity and the possible failure of the pile tip. According to the test results, the total bearing capacity of open-ended piles approaches the total bearing capacity of closed-ended piles with the increase of the penetration depth. The failure of pile tip could be occurred in the region of 0.8~1.1 times as the inside diameter from the pile tip.

  • PDF

Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors (링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석)

  • Kim, Jeong-Hoi;Lee, Doo-Sung;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.249-257
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that make up for the defects of PHC piles. CFP (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) piles developed in this study increases the compressive stress through enlarged cross section by rearranging composite shear connectors and filling the hollow part of PHC pile with concrete. And it improved shear and bending performance placing the rebar (H13-8ea) within the PHC pile and the hollow part of PHC pile of rebar (H19-8ea). In addition, the composite shear connectors were placed for the composite behavior between PHC pile and filled concrete. Placing Rebars (H13-8ea) of PHC pile into composite shear connector holes are sleeve-type mechanical coupling method that filling the concrete to the gap of the two members. Nonlinear finite element analyzes were performed to verify the performance of shear and bending moments and it deduced the spacing of the composite shear connectors. Through a various interpretation of CFP piles, it's proved that the CFP pile can increase the shear and bending stiffness of the PHC pile effectively. Therefore, this can be utilized usefully on the construction sites.

Estimation of Vertical Load Capacity of PCFT Hybrid Composite Piles Using Dynamic Load Tests (동재하시험을 통한 긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 연직지지력 평가)

  • Park, Nowon;Paik, Kyuho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • To determine the optimum dynamic load test analysis for PCFT (Prestressed Concrete Filled steel Tube) hybrid composite piles that PCFT piles are connected to the top of PHC piles, the dynamic load tests and CAPWAP analyses were performed on two hybrid composite piles with steel pipe and PCFT piles as upper piles. The results of the dynamic load tests and CAPWAP analyses showed that the particle velocity measured in PCFT hybrid composite piles was equal to the wave speed of PHC piles when the strain gauges and accelerometers are attached to the surface of inner composite PHC pile after removing the steel pipe in the upper PCFT pile. In addition, when assuming that the material of that upper PCFT pile was the same as that of the lower PHC pile and the cross-sectional area of the steel pipe in upper PCFT pile was converted to that for concrete through the pile model (PM) in CAPWAP analysis, the accuracy of the CAPWAP analysis result for PCFT hybrid composite piles was very high.

Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate (고강도 콘크리트 말뚝과 기초판 접합부의 최적 철근보강량 산정)

  • Park, Jong-Bae;Sim, Young-Jong;Chun, Young-Soo;Park, Seong-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Method of protruding steel bar embedded in PHC pile for connecting with foundation plate is an intermediate form of fixed and hinged connection and has often been used in architectural structures such as apartment complex. However, mechanical properties of this method have not been proved and its construction process is not simple. In this study, therefore, by analyzing previous research and by considering ratio of steel bar and concrete in PHC pile, which is minimum reinforcement of rebar, the newly optimized method of reinforcing joint of PHC pile and foundation plate is suggested with respect to PHC pile type (PHC 450, PHC 500, and PHC 600). To assess mechanical properties (ultimate tensile and shear strength) of joint of PHC pile and foundation plate, full scale experimental tests are performed. As a result, all cases are satisfied with required design criteria and can be practically applied. Our results indicate that reduction of rebar reinforcement compared to previous method would lead cost saving in PHC pile construction.

A Study on Estimation of End Bearing Capacity of a PHC-W Pile in Building Underground Additional Wall Using the PHC-W Earth Retaining Wall (PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝의 선단지지력 산정에 관한 연구)

  • Kim, Chea Min;Yun, Daehee;Lee, Chang Uk;Johannes, Jeanette Odelia;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.5-16
    • /
    • 2019
  • With the recent concentration of urban populations, the constructions of large structures are increasing, along with the development of foundations for large structures. PHC Piles have been used in many structures ever since Japanese introduced the technology at the end of the 20th century. Recently, many studies on the use of the PHC Pile have been carried out as earth retaining using the merits of PHC piles. In this study, static axial compression tests were conducted on the PHC-W piles constructed as column-type in building underground additional wall using the PHC-W earth retaining wall. The end bearing capacity of pile was calculated using the axial load transfer measurement that was obtained from the static axial compression test result. Since end bearing capacity of the PHC-W pile embedded in weathered rock showed a different behaviour from the conventional PHC pile, the calculation method of end bearing capacity for column-type PHC-W piles would be proposed. The unit ultimate end bearing equation proposed for single and group PHC-W pile embedded in weathered rock is $q_b=13.3N_b$ and $q_b=6.8N_b$.

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.