• Title/Summary/Keyword: PGE2

Search Result 167, Processing Time 0.024 seconds

The Effect of Glucopyranosyldiacylglycerol from Padina arborescens on the Prevention of Hair-Loss (부챗말 Glucopyranosyldiacylglycerol의 탈모방지 효능)

  • Kang, Jung-Il;Kim, Jungeun;Kim, Sang-Cheol;Han, Sang-Chul;Lee, Ji-Hyeok;Lee, Jaehyun;Noh, Euijun;Jeon, You-Jin;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study was conducted to evaluate the effects of Padina arborescens and 1-O-myristoyl-2-O-oleoyl-3-O-(α-D-glucopyranosyl)-glycerol(MOGG), its active component, on the prevention of hair loss. The P. arborescens extract and MOGG inhibited the activity of 5α-reductase, which converts testosterone to dihydrotestosterone(DHT), a main cause of androgenetic alopecia. When immortalized rat vibrissa dermal papilla cells were treated with MOGG, the proliferation of dermal papilla cells significantly increased. In addition, we found that the P. arborescens extract and MOGG could open the KATP channel, which may contribute to increase hair growth. Furthermore, MOGG promoted PGE2 production in HaCaT cells. The results suggest that MOGG from the P. arborescens extract has the potential to treat alopecia via 5α-reductase inhibition, the proliferation of dermal papilla, the opening of the KATP channel and/or increase of PGE2 production.

Amelioration of DSS-induced colitis in mice by TNF-α-stimulated mesenchymal stem cells derived from feline adipose tissue via COX-2/PGE2 activation

  • Kyeongbo Kim;Ju-Hyun An;Su-Min Park;GaHyun Lim;Kyung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.52.1-52.13
    • /
    • 2023
  • Background: Mesenchymal stem cells (MSCs) have been investigated as therapeutic agents for inflammatory bowel disease (IBD). Stimulation of MSCs with pro-inflammatory cytokines is an approach to enhance their immunomodulatory effects. However, further investigation is required to support their application in immune-mediated disorders and companion animals. Objectives: This study aimed to assess the therapeutic effect of tumor necrosis factor (TNF)-α-stimulated feline adipose tissue-derived MSCs (fAT-MSCs) in a dextran sulfate sodium (DSS)-induced colitis mouse model. Methods: Colitis mice was made by drinking water with 3% DSS and fAT-MSCs were injected intraperitoneally. Colons were collected on day 10. The severity of the disease was evaluated and compared. Raw 264.7 cells were cultured with the conditioned medium to determine the mechanism, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: TNF-α-stimulated fAT-MSCs more improved severity of DSS-induced colitis in disease activity, colon length, histologic score, and inflammatory cytokine. In sectionized colon tissues, the group comprising TNF-α-stimulated fAT-MSCs had higher proportion of CD11b+CD206+ macrophages than in the other groups. In vitro, TNF-α-stimulation increased cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) secretion from fAT-MSCs. The conditioned medium from TNF-α-stimulated fAT-MSCs enhanced the expression of interleukin-10 and arginase-1 in LPS-activated Raw 264.7 cells. Conclusions: These results represent that TNF-α-stimulated fat-mscs ameliorate the inflamed colon more effectively. Furthermore, we demonstrated that the effectiveness was interlinked with the COX-2/PGE2 pathway.

Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells (이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과)

  • Chul Hwan Kim;Young-Kyung Lee;Min Jin Kim;Ji Su Choi;Buyng Su Hwang;Pyo Yun Cho;Young Jun Kim;Yong Tae Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Myriophyllum spicatum L. has been used as an ornamental in ponds and aquariums, and as a folk remedy for inflammation and pus. Nevertheless, the biological activity and underlying mechanisms of anti-inflammatory effects are unclear. This study is aimed at investigating the antioxidative and anti-inflammatory activities of ethanol extract of Myriophyllum spicatum L. (EMS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Antioxidant activity of EMS was assessed by radical-scavenging effects on ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. As inflammatory response parameters produced by LPS-stimulated RAW 264.7 cells were quantified to assess the anti-inflammatory activity of EMS. Our results showed that EMS increased FRAP and DPPH radical-scavenging activity. In EMS-treated RAW 264.7 cells, the production of NO, PGE2, TNF-α and IL-1β was significantly inhibited at the non-cytotoxic concentration. In addition, EMS significantly attenuated LPS-stimulated the toll-like receptor (TLR) 4/myeloid differentiation protein (MyD) 88 signaling pathway, and inhibited nuclear translocation of nuclear factor-kappa B(NF-κB). Positive correlations were noted between anti-inflammatory activity and antioxidant activity. In conclusion, it was indicated that EMS suppresses the transcription of inflammatory factors by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing LPS-stimulated inflammation in RAW 264.7 cells. This study highlights the potential role of EMS against inflammation and associated diseases.

Anti-inflammatory Effects on 80% Ethanol Extract and Ethyl Acetate Fraction of Acrosorium yendoi Yamada in Murine Macrophage RAW 264.7 Cells (Murine Macrophage RAW 264.7 세포에서 누은분홍잎(Acrosorium yendoi Yamada)의 추출물과 에틸아세테이트 분획물에 대한 항염증 효과)

  • Ko, Chang-Sik;Hyun, Woo-Cheol;Kim, Ji-hyun;Ko, Yeong-Jong;Song, Sang Mok;Ko, Mi-Hee;Lee, Jong-Chul;Kim, Chang-Sook;Yoon, Weon-Jong
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.574-581
    • /
    • 2015
  • This study describes a preliminary evaluation of the anti-inflammatory activity of Acrosorium yendoi Yamada extracts. A. yendoi Yamada was extracted using 80% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. To screen for anti-inflammatory agents effectively, we first examined the inhibitory effect of 80% EtOH extract and solvent fractions of A. yendoi Yamada on the production of pro-inflammatory factors and cytokines stimulated with lipopolysaccharide. In addition, we examined the inhibitory effect of 80% EtOH extract and solvent fractions of A. yendoi Yamada on pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in RAW 264.7 cells. In the sequential fractions of n-hexane and EtOAc inhibited the NO and PGE2 production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines (TNF-α, and IL-6). These results suggest that A. yendoi Yamada may have significant effects on inflammatory factors and may be provided as possible anti-inflammatory therapeutic seaweed.

Effect of Cyclooxygenase-2 Specific Inhibitor (SC-58635) on the Production of Nitric Oxide and Prostaglandin E2 in Lipopolysaccharide-stimulated Macrophage Cells (Cyclooxygenase-2 Specific Inhibitor (SC-58635)가 Lipopolysaccharide로 자극한 대식세포에서 Nitric Oxide와 Prostaglandin E2 생산에 미치는 영향)

  • Hong, Seung-Jae;Yang, Hyung-In;Yoon, Hwi-Joong;Lee, Myoung-Soo;Kang, Hyo-Jong;Kim, Wan-Uk;Lee, Sang-Heon;Cho, Chul-Soo;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Background: Celecoxib, a COX-2 specific inhibitor, has recently been used for the treatment of rheumatoid arthritis. However, the molecular and cellular mechanisms of celecoxib against RA inflammation remain to be defined. To elucidate the action mechanism of celecoxib on inflammatory cells, we investigated the effect of celecoxib on the production of two important mediators of inflammation, nitric oxide and PGE2 Methods: RAW 264.7 cells stimulated with LPS were preincubated with various concentrations of celecoxib (from $10^{-8}$ to $10^{-5}$ M) and $10{\mu}M$ hydrocortisone, respectively. The production of NO and PGE2, the end products of iNOS and COX-2 genes, were estimated in culture supernatants by Greiss method and EIA, respectively. The expression of iNOS gene, COX-2 gene, $NF-{\kappa}B$, and $I-{\kappa}B$ were determined by RT-PCR and western blot analysis. Results: Celecoxib and hydrocortisone inhibited the production of NO and PGE2 in dose dependent manner, when RAW 264.7 cells were stimulated with LPS. The expression of iNOS was also down-regulated by celecoxib and hydrocortisone. Interestingly, COX-2 gene differentially expressed according to the dose of celecoxib, a decrease with lower dose ($10^{-8}$ M) but an increase with higher dose ($10^{-5}$ M). $NF-{\kappa}B$ binding activity was decreased by lower dose of celecoxib, whereas was not affected by higher dose of it. The expression of $I-{\kappa}B$ was suppressed by higher dose of celecoxib. Conclusion: The celecoxib strongly suppressed the production of NO and PGE2 in LPS-stimulated RAW264.7 cells. The decrease of NO seems to be linked to the inhibition of iNOS by celecoxib. The lower and higher dose of celecoxib differentially regulated the COX-2 expression and $NF-{\kappa}B$ activity.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Differential Effects of Anti-IL-1R Accessory Protein Antibodies on IL-1α or IL-1β-induced Production of PGE2 and IL-6 from 3T3-L1 Cells

  • Yoon, Do-Young;Dinarello, Charles A.
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.562-570
    • /
    • 2007
  • Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-$1\beta$-induced productions of IL-6 and PGE2 from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, antipeptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-$1\beta$ compared to IL-$1\alpha$. IL-1-induced IL-6 production was augmented by coincubation with PGE2. The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE2 production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE2. However, the effect of PGE2 is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.

Bee Venom-induced Growth Inhibition of Human Lung Cancer Cells was Associated with Inhibition of Prostagladin E2 Production and Telomerase Activity. (인체폐암세포에서 봉독에 의한 prostagladin E2 생성 및 telomerase 활성 저하)

  • Kim, Jong-Hwan;Hwang, Won-Deuk;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.502-507
    • /
    • 2009
  • In modern oriental medicine, bee venom therapy is being used for aqua-acupuncture to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and gout. Bee venom therapy has been processed and reported in many experimental studies, with regard to its effects on pain alleviation, anti-inflammation, removal of fever, anti-convulsion, suppression of tumor and immunity strengthening, etc., however, its mechanism of action, molecular targeting on prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remains unclear. In this study, we investigated the effect of bee venom on the levels of cyclooxygenases (COXs) and telomere regulatory components of A549 human lung cancer cells. Bee venom-induced anti-proliferative effects of A549 cells were associated with the inhibition of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR), transcription factor c-myc and the activity of telomerase. In addition, bee venom treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of bee venom.

Anti-inflammation effect of extract from Zostera marina using UVB-induced damage on keratinocytes (잘피 추출물의 UVB로 손상을 유도한 각질형성세포에 대한 항염 효능)

  • Kim, Bo-Ae
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.87-91
    • /
    • 2016
  • Objectives : In order to confirm whether extracts of different parts of Zostera marina (ZM), a marine flowering plant, can be used as cosmetic ingredients, this study evaluated their cytotoxicity and cytoprotective effects against ultraviolet B (UVB). Inflammatory responses induced by UV stimuli are also associated with the aging of the skin.Methods : We investigated the effects of ZM extracts on cells through the water soluble tetrazolium salt-1(WST-1) assay for cell viability. In order to investigate the anti-inflammatory effects, we evaluated the suppression of Cyclooxygenase-2 (COX-2) expression by ZM extracts in HaCaT cells with UVB-induced damages, and also evaluated the production of Prostaglandin E2 (PGE2) in RAW 264.7 cells with LPS-induced damages.Results : High cell viabilities above 90% were observed in all types of ZM extracts, except for whole ZM extract at 0.5 mg/ml; in keratinocytes with UVB-induced damages, the cell viabilities were above 80% when treated with all types of ZM extracts. We confirmed their anti-inflammatory effects by investigating the suppression of inflammatory mediators. In keratinocytes with UVB-induced damages, COX-2 expression decreased in the experimental group treated with ZM extract. Similarly, in RAW 264.7 cells where inflammation was induced with LPS, the biosynthesis of PGE2 was inhibited.Conclusion : These results suggest that ethanol extracts from Zostera marina may have value as the potential anti-inflammatory medicinal plant. Also based on the abovementioned results, ZM extract protects skin cells from UV-induced damages, and thus can be used in topically applied products for skin protection.

The Effect of Lipo-PGE1 According to the Routes of Administration on the Survival of Transverse Rectus Abdominis Musculocutaneous Flap in Rats (Lipo-PGE1의 투여경로가 흰쥐의 횡복직근피판의 생존률에 미치는 효과)

  • Kim, Sung-Sik;Byeon, Jun-Hee;Yoo, Gyeol;Han, Ki-Taik
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.12-18
    • /
    • 2005
  • The Transverse rectus abdominis musculocutaneous (TRAM) flap has been commonly used for autologous breast reconstruction. Despite these clinical usefulness, the TRAM flap is prone to partial flap or fat necrosis in especially pedicled flap. To improve flap survival, the surgical delay procedures and pharmacological treatments have been developed. In many studies for the pharmacological treatment, Lipo-$PGE_1$ has demonstrated a marked ability to improve flap survival and it's effect has been proved similar to surgical delay procedure. The purpose of this study is to determine the most effective route of Lipo-$PGE_1$ administration as a pharmacological treatment in TRAM flap of the rat. Fifty male Sprague-Dawley rats weighing 300-350 gm were divided into five groups, One week before flap elevation, Lipo-$PGE_1$($2{\mu}g/kg$) was injected three times in a week and than the left inferior epigastric vessel based TRAM flap ($5.0{\times}3.0cm$) elevated; group I: no procedure before flap elevation; group II: intraperitoneal injection; group III: intravenous injection; group IV: subcutaneous injection; group V: topical application. A flap was assessed at postoperative 7 days by comparison of flap survival rate, vessel counts(H-E stain), and vascular endothelial growth factor(VEGF) protein expressed by Western blot. The results demonstrated that the mean percentages of the flap survival area in group III were significantly higher than that of any other group(p<0.05). The vessel counts of all experimental groups were statistically higher than that of control group(p<0.05). Only in group III, the VEGF protein expression was increased significantly than control group and there are no difference in other experimental groups. In conclusion, the intravenous administration of the Lipo-$PGE_1$ is the most effective on flap survival, and the VEGF induced by Lipo-$PGE_1$ has some positive effects on new vessel formation and flap survival.