• 제목/요약/키워드: PGCs

검색결과 63건 처리시간 0.021초

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 춘계학술세미나 및 워크숍
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF

Isolation and Genetic Transformation of Primordial Germ Cell (PGC)-Derived Cells from Cattle, Goats, Rabbits and Rats

  • Lee, C.K.;Moore, K.;Scales, N.;Westhusin, M.;Newton, G.;Im, K.S.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권5호
    • /
    • pp.587-594
    • /
    • 2000
  • At present embryonic stem (ES) cells with confirmed pluripotential properties are only available in the mouse. Recently, we were able to isolate, culture and genetically transform primordial germ cell (PGC)-derived cells from pig embryos and demonstrate their ability to contribute to chimera development in the pig. In order to determine whether the system we developed could be used to isolate embryonic germ (EG) cells from other mammalian species, we placed isolated PGCs from cattle, goats, rabbits and rats in culture. Briefly, PGCs were isolated from fetuses of cow (day 30-50), goat (day 25), rabbit (day 15-18) and rat (day 11-12), and plated on STO feeder cells in Dulbecco's modified Eagle's medium (DMEM): Ham's F10 medium (1:1) supplemented with 0.01 mM nonessential amino acids, 2 mM L-glutamine, 0.1 mM $\beta$ - mercaptoethnol, soluble recombinant human stem cell factor (SCF; 40ng/ml), human basic fibroblast growth factor (bFGF; 20ng/ml) and human leukemia inhibitory factor (LIF; 20ng/ml). For maintenance of the cells, colonies were passed to fresh feeders every 7-10 days. In all species tested, we were able to obtain and maintain colonies with ES-like morphology. Their developmental potential was tested by alkaline phosphatase (AP) staining and in vitro differentiation assay. For genetic transformation, cells were electroporated with a construct containing the green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter. GFP-expressing colonies were detected in cattle, rabbits and rats. These results suggest that PGC-derived cells from cattle, goats, rabbits and rats can be isolated, cultured, and genetically transformed, and provide the basis for analyzing their developmental potential and their possible use for the precise genetic modification of these species.

구순구개열 태아의 비정상적인 상악골 성장형태에 대한 연구 (ABNORMAL GROWTH PATTERN OF HUMAN FETAL MAXILLA WITH CLEFT LIP AND PALATE)

  • 김성민;김정환;김지혁;박영욱;이종호;이석근
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권3호
    • /
    • pp.238-246
    • /
    • 2007
  • This study is aimed to elucidate the abnormal growth pattern of human fetal maxilla with cleft lip and palate (CLP). Total 71 fetal maxillae with CLP were obtained from aborted human fetuses. They were examined radiologically for the dimensional changes of maxillary trapezoid (MT) formed by maxillary primary growth centers (MxPGC)(Lee et al., 1992). In palatal radiogram of the CLP maxilla, the MT was traced by the anterior and posterior MxPGCs, and the dimensions of anterior and posterior maxillary widths, maxillary length, and MT length (MTL), and MT area were measured for evaluation of the basic growth pattern of the developing maxilla. The growth of anterior and posterior MxPGCs was severely retarded in the prenatal maxillae with CLPs, showing abnormal shape of MT. Cleft lip subjects without cleft palate also showed arrested growth of MT. Unilateral cleft lipalveolar cleft or cleft palate (UCL-AC/CP) and bilateral cleft lip-alveolar cleft or cleft palate (BCL-AC/CP) showed enhanced abnormal MT pattern. The abnormality of MT was most marked in BCL-AC/CP. It was also observed that the craniofacial malformations other than CLPs produced abnormal MT. In conclusion, the MT growth of prenatal CLP maxilla was severely arrested and resulting in abnormal MT shape on the palatal radiogram. BCL-AC/CP showed more protruded nasal septum than other types of CLPs, while UCL-AC/CP showed severe deviation of the protruded nasal septum towards the non-cleft side. Cleft lip only subjects also showed the abnormal growth of MT. These data suggest that the MT is primarily involved in CLPs, and MT shape could be utilized as a sensitive indicator for the analysis of maxillary malformation in different types of CLPs.

Early Gonadogenesis and Sex Differentiation in the Korean Rose Bitterling, Rhodeus uyekii

  • Goo, In Bon;Kim, Jung Eun;Kim, Myung Hun;Choi, Hye-Sung;Kong, Hee Jeong;Lee, Jeong Ho;Park, In-Seok
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권4호
    • /
    • pp.289-296
    • /
    • 2016
  • This report describes the sex differentiation of the Korean rose bitterling, Rhodeus uyekii, from hatching to 170 days post-hatch (DPH) in relation to total length (TL), body weight (BW), and integral water temperature (IWT). The growth curve of TL from just hatching to 83 DPH was $5.144e^{0.045t}$ ($R^2=0.961$; t, time), and that of BW was $2.398e^{0.086t}$ ($R^2=0.725$). Primordial germ cells (PGCs) were observed at 17 DPH (7.9 mm TL, 3.74 mg BW, $374^{\circ}C$ IWT), and thereafter began to protrude into the peritoneal cavity. At 21 DPH ($9.2{\pm}0.14mm$ TL, $4.8{\pm}0.07mg$ BW, $462^{\circ}C$ IWT), some PGCs contained condensed chromatin and oocyte were observed in meiotic prophase. In contrast to the ovaries, which grew gradually after sexual differentiation, testes began multiplying at 25 DPH (10.1 mm TL, 5.42 mg BW, $550^{\circ}C$ IWT), when testicular differentiation was first identified, and multiplied continuously thereafter. At 33 DPH (11.2 mm TL, 10.5 mg BW, $726^{\circ}C$ IWT), the developing testes contained spermatogonia that exhibited mitotic activity. No spermatocyte or sperm cell was observed until 83 DPH (18.9 TL, 48.2 mg BW, $1,826^{\circ}C$ IWT). At 170 DPH (32.5 mm TL, 270.1 mg BW, $3,740^{\circ}C$ IWT), which was the end point of this study, the mature ovaries showed germinal vesicle breakdown, while the mature testes contained observable spermatocytes and sperm cells. These results allow us to identify the sex differentiation type of the Korean rose bitterling as differentiated gonochoristic.

The capabilities of migration and differentiation of female primordial germ cells after transferring to male embryos

  • Lee, Young-Mok;Kim, Mi-Ah;Shin, Sang-Su;Park, Tas-Sub;Park, Hyun-Jeong;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2001년도 제18차 정기총회 및 학술발표 PROCEEDINGS
    • /
    • pp.74-76
    • /
    • 2001
  • 조류의 경우에는 포유류와 달리 수정란의 성별이 암컷에 의하여 결정된다. 수컷은 동일접합체로 ZZ 염색체를, 암컷의 경우에는 이형접합체로 Z W 염색체를 갖기 때문이다. 현재까지 조류에 있어서 염색체 분석 등에 의한 암 ·수의 세포 유전학적인 특성은 많은 연구가 되어 있으나, 배발달 초기의 원시생식세포 등에 대해서는 많은 연구가 진행되어 있지 않다. 따라서 본 연구는 암컷의 원시생식세포를 분리하여 숫컷의 초기 배자에 주입함으로써 수용체 배자의 원시생식기내로 이동이 가능한지를 검증하였으며, 또한 수컷의 원시생식기내로의 이동 후 정상적으로 분열 및 분화가 가능한지를 초기 배발달 과정에서 확인하였다. 본 연구 결과, 암컷의 원시생식세포는 수컷의 수용체 배자에 재주입시 정상적인 원시생식기내로의 이동 능력을 보여주었으며, 분열 ·분화함을 알 수있었다.

  • PDF

Germline Modification and Engineering in Avian Species

  • Lee, Hong Jo;Lee, Hyung Chul;Han, Jae Yong
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.743-749
    • /
    • 2015
  • Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through longterm culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies.

Transgenesis and Germ Cell Engineering in Domestic Animals

  • Lee, C.K.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.910-927
    • /
    • 2003
  • Transgenesis is a very powerful tool not only to help understanding the basics of life science but also to improve the efficiency of animal production. Since the first transgenic mouse was born in 1980, rapid development and wide application of this technique have been made in laboratory animals as well as in domestic animals. Although pronuclear injection is the most widely used method and nuclear transfer using somatic cells broadens the choice of making transgenic domestic animals, the demand for precise manipulation of the genome leads to the utilization of gene targeting. To make this technique possible, a pluripotent embryonic cell line such as embryonic stem (ES) cell is required to carry genetic mutation to further generations. However, ES cell, well established in mice, is not available in domestic animals even though many attempt to establish the cell line. An alternate source of pluripotent cells is embryonic germ (EG) cells derived from primordial germ cells (PGCs). To make gene targeting feasible in this cell line, a better culture system would help to minimize the unnecessary loss of cells in vitro. In this review, general methods to produce transgenic domestic animals will be mentioned. Also, it will focus on germ cell engineering and methods to improve the establishment of pluripotent embryonic cell lines in domestic animals.

Zebrafish Dnd protein binds to 3'UTR of geminin mRNA and regulates its expression

  • Chen, Shu;Zeng, Mei;Sun, Huaqin;Deng, Wenqian;Lu, Yilu;Tao, Dachang;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.438-444
    • /
    • 2010
  • Dnd (dead end) gene encodes an RNA binding protein and is specifically expressed in primordial germ cells (PGCs) as a vertebrate-specific component of the germ plasma throughout embryogenesis. By utilizing a technique of specific nucleic acids associated with proteins (SNAAP), 13 potential target mRNAs of zebrafish Dnd (ZDnd) protein were identified from 8-cell embryo, and 8 target mRNAs have been confirmed using an RT-PCR analysis. Of the target mRNAs, the present study is focused on the regulation of geminin, which is an inhibitor of DNA replication. Using electrophoretic mobility shift assay (EMSA), we demonstrated that ZDND protein bound the 67-nucleotide region from 864 to 931 in the 3'UTR of geminin mRNA, a sequence containing 60.29% of uridine. Results from a dual-luciferase assay in HEK293 cells showed that ZDND increases the translation of geminin. Taken together, the identification of target mRNA for ZDnd will be helpful to further explore the biological function of Dnd in zebrafish germ-line development as well as in cancer cells.

닭 배자 조작을 위한 난각 주입부위별 생존율 비교 (Comparison of Viable Rates of Chick Embryos by Different Eggshell Window Positioning)

  • J. Y. Han;D. S. Seo;Y. H. Hong;D. K. Jeong;Y. S. Shin
    • 한국가금학회지
    • /
    • 제23권1호
    • /
    • pp.9-17
    • /
    • 1996
  • 이 연구의 목적은 주입구의 위치에 따른 병아리 배아의 생존율을 서로 비교하고 가장 적합한 주입구 위치를 찾기 위하여 실시되었다. 멸균처리된 핀셋을 사용하여 난각의 첨단부와 둔단부 그리고 옆부분에 주입구를 각각 만들었다. 연구 결과, 둔단부에 주입구 (BE1)를 만든 수정란의 발생율이 가장 높았으나 내부난각막이 불투명하여 혈관내 미세주입이 어렵다. 따라서 본 연구에서는 첨단부에 주입구를 만든 다음 이 주입구를 통하여 약 2 $\mu$L의 DMEM 용액을 2.5일령된 배자의 혈관에 주입하였고, 주입부위의 출혈을 막기 위해 DMEM 용액을 주입한 후 공기방울을 넣은 결과 생존율이 약 17.0% 이었다. 따라서 이러한 주입구에 의한 방법은 생식세포가 조작된 germline chimera 또는 형질전환닭을 생산하는데 매우 유용한 시스템으로 이용될 수 있을 것이다.

  • PDF

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.