• Title/Summary/Keyword: PET fabric structures

Search Result 9, Processing Time 0.027 seconds

Electromagnetic Wave Shielding Effectiveness of Electroless Chemical Copper and Nickel Plating PET fabrics (구리와 니켈 금속이 무전해 도금된 폴리에스테르 섬유의 구조에 따른 전자파 차폐성)

  • Chun, Tae-Il;Park, Jung-Hwan
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.385-388
    • /
    • 2008
  • Four kinds of PET fabrics were coated with Copper and Nickel by electroless chemical plating, and the electromagnetic wave shielding effectiveness for those samples have been examined. The shielding effectiveness showed between 90 dB and 70 dB, and it related to the fabric structure, such as cover factor and cloth density. The dense fabric structure showed the better shielding effect.

Comparisons of Electrical Conductivity between Polyester/Polyurethane and Nylon/Polyurethane Woven or Knitted Fabrics with Silver Paste Patterns in Elongation-Strain test (폴리에스터/폴리우레탄 및 나일론/폴리우레탄에 은 문양을 입힌 편직물의 신장-변형 시 전기 전도도 비교)

  • Kim, Hyejin;Yun, Changsang;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • The objective of this study was to investigate electrical conductivity of fabrics from polyester (PET) and Nylon (N) containing polyurethane (PU), with silver paste patterns screen-stenciled in three directions. The PET/PU and N/PU fabrics knitted or woven were uniaxially strain-recovered up to 22.5% in three times when each change in electrical resistance was simultaneously measured. This study established four variables that complexly affected electrical conductivity of these specimens; fabric structures, components, cover factors, and the percolation of silver particles. The woven or knitted fabric structures did not distinctively cause the changes in electrical resistance, however, the woven fabrics with the diagonal patterns showed their relatively high electrical resistance. The PET/PU fabrics with increasing the PET proportion generally presented the opposite propensity to its electrical conductivity. The changes in electric resistance of the PET/PU 85/15 2/1 twill and double plain fabrics instantaneously responded to the rate of elongation. The PET/PU group exhibited a reverse correlation between its cover factor and electrical resistivity. The highest electrical conductivity of the PET/PU 95/5 interlock fabric, with very few fluctuations, was attributed to the deep percolation of the silver particles that bridged the gaps between one loop and another. On the other hand, the occurrence of the silver cracks along with the elongated direction led to the immeasurably high change in electrical resistance as the strain increased.

A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating (TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeum, Jeong-Hyun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

A Study on the Mechanical Properties to the Weight Reduction Rate of PET Fabrics(I) (PET직물의 감량률에 따른 역학적 특성변화에 관한 연구(I))

  • 이민수;김승진;조대현;김태훈
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.1-12
    • /
    • 1998
  • This study surveys the mechanical properties such as bending and shear properties to the weight reduction rate of PET fabrics. For this purpose, 12 kinds of satin and 18 kinds of plain weave fabrics are prepared with change of the physical properties of weft yarn(T.P.M., density, and denier) The weight reduction rate was 0%, 12%, 25%, and 30%. Bending rigidity and hysteresis, shear rigidity and hysteresis were measured and discussed with theoretical values in relation with weft twist, yarn linear density, weft fabric density and weave structures.

  • PDF

Effect of Nonionic Surfactant Solutions on Wetting and Absorbency of Polyethylene Terephthalate(PET) Fabrics (Part II) -Surfactants Characteristics and Fabric Properties- (비이온계 계면활성제 수용액이 PET직물의 습윤특성에 미치는 영향 (제2보) -계면활성제와 직물의 특성-)

  • Kim, Chun-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1546-1553
    • /
    • 2005
  • The wetting behavior and liquid transport of nonionic surfactant solutions; Span 20 and Tween 20, 40, 60, 80, 21, 61, 81, 65 & 85: in polyethylene terephthalate(PET) fabrics are reported. Five different PET fabrics are used in this study. PET 1, 2 & 3 have different compactness in structure. PET 4 & 5 have similar physical properties to PET 2, however, PET 4 has heat set finish and PET 5 with rewetting agent. The wetting and water retention properties of PET fabrics are greatly improved by addition of nonionic surfactants. The aqueous liquid retention(W) vs. cosq and W vs. adhesion tension has positive linear relationship. Hydrophilic surfactants which have short hydrophobes and surfactants with unsaturated hydrophobe structures are more efffctive in improving the wetting properties of PET fabrics. PET fabric which has larger thread spacing shows greater value of water retention ratio(W/H) than PET fabric with smaller thread spacing if there are no surfactants present in the system, however, W/H values become very similar among these PET fabrics when the surfactants are added. If there are no surfactants present in the system, PET with heat set finish has smaller value and PET with rewetting agent has greater value of W/H than PET without finish even though the fabrics have the similar physical properties.

Effects of Alkali Treatment on Physical Properties of PET Fabrics (알칼리 처리에 의한 폴리에스테르 직물의 물성 변화)

  • Yu, Hye-Ja;Choe, Jong-Myeong;Lee, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.609-619
    • /
    • 1996
  • Polyethylene Terephthalate (PET) has been used as a mainstream fiber to make silklike fiber. The silky characteristics such as softness, dry touch feeling and flexibility can be obtained by weight reduction treatment. In aqueous alkali solution, the surface of PET is dissolved away and reduced in weight. The PET fiber, yarn and fabric become thinner and the gaps between fibers are wider. Its mobility is greatly improved without change of basic structures of the treated PET fibrics. The alkali treatment was conducted under the various experimental conditions such as alkali (NaOH) concentration, treatment time and temperature. As the weight loss increased, drapability improved and tensile strength remarkably reduced. When the PET fabrics lost 30% in their weight, drape coefficient lowered as much as 30oA and tensile stregth lowered as much as 50%. The weight loss over 30% brings great improvement in drapability and dyeability and significant decline in durability. By the alkali treatment, absorbency in spectrophotometer of dyed PET can be increased as much as 82% due to the increase of the surface area and formation of microvoids on the surface.

  • PDF

A Study on the Mechanical Properties to the Weight Reduction Rate of PET Fabrics(III) (PET직물의 감량율에 따른 역학적 특성변화에 관한 연구(III))

  • 홍성철;이희준;조대현;김승진
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This study surveys the mechanical properties such as surface properties(MIU, MMD, SMD) to the weight reduction rate of PET fabrics. For this purpose, 12 kinds of satin and 18 kinds of plain weave fabrics are prepared with change of the physical properties of weft yarn(T.P.M., density, and denier). The weight reduction rate was 0%, 12%, 25%, and 30%. Coefficient of friction(MIU), mean deviation of friction(MMD), and geometrical roughness(SMD) of the fabrics were measured and discussed with wed twist, yarn linear density, weft fabric density and weave structures.

  • PDF

Antimicrobial Activity of Fabrics Treated with Colloidal Silver Solutions Made by Electrolysis and Reduction (제조 방법이 다른 은 콜로이드 용액 처리 직물의 항균효과)

  • Chung Haewon;Kim Boyeon;Yang Heeju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.805-813
    • /
    • 2005
  • In recent years, greatly increased incidences of diseases made people more concerned about their hygienic environment. Since clothes are the closest environment to man, many methods have beef proposed to impart antimicrobial properties to the textiles. Benefits associated with incorporating antimicrobial properties in textiles include protection to the wearer from microbiological attack, and prevention of odor from perspiration. Silver has been known to kill 650 different disease organisms, however, nano-sized silver particles are known as skin friendly and does not cause skin irritation. In this study, we have examined the antimicrobial effects of cotton or polyester fabric, on which nano-sized silver particles were treated. Colloidal silver solution made by electrolysis of $99.9\%$ silver stick was more effective than that by reduction of $AgNO_3.\;0.7\%$ concentration of colloidal silver solution by electrolysis is helpful to give reduction of $99.9\%$ S. aureus and K. pneumoniae on a cotton fabric without the decrease of whiteness. Since the structures of fiber and fabric effect on their antimicrobial property, PET filament fabric didn't have sufficient antimicrobial properly. The fabrics treated with up to $5\%$ colloidal silver solution didn't have the properly of antistatic and electromagnetic shield.

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.