• Title/Summary/Keyword: PET/PTT

Search Result 30, Processing Time 0.022 seconds

Crystallization Behavior of poly(trimethylene terephthalate) in a Confined Geometry (제한공간에서의 폴리(트리메틸렌 테레프탈레이트)의 결정화 거동)

  • 임정은;이종관;이광희
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.293-298
    • /
    • 2003
  • The development of the crystalline structure of poly(trimethylene terephthalate) (PTT) in a confined geometry was investigated with optical microscope, small angle light scattering, and X-ray diffraction. The rejected distance, which was represented in terms of the parameter $\delta$, played an important role in determining the morphological patterns of poly (ethylene terethphalate) (PET/PTT) blend. In case of stepwise crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with the PTT crystals. The spherulitic surface of the PET crtstals acted as the nucleation sites where the PTT molecules preferentially crystallized, leading to the formation of transcrystalline structure. As a result, a mixed morphological pattern was observed in the PTT-rich phase: one was a typical spherulitic texture and the other was a transcrystalline texture. Some of the molecular conformations of PTT, which could adopt in the absence of the space limitation, were probably forbidden in the interlamellar and/or interfibrillar regions of the PET spherulite. This constraint was responsible for difference in the crystallization and melting behavior of PTT between the intra and interspheulitic regions of PET.

Structure Development of Uniaxially Drawn Poly(trimethylene terephthalate)/ Poly(ethylene terephthalnte) Blends (일축 연신에 의한 폴리(트리메틸렌 데레프탈레이트)/ 폴리(에틸렌 데레프탈레이트) 블렌드의 구조 변화)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • The effects of drawing temperature and draw down ratio on thermal properties, crystallinity and orientation of poly(trimethylene terephthalate)/poly(ethylene terephthalate) (PTT/PET) 100/0 ,90/10, and 80/20 blends have been investigated. The crystallinity and glass transition temperature increased while cold crystallization temperature and cold enthalpy decreased due to the development of orientation and stress induced crystallization by the cord drawing. Introducing PET to PTT decreased the crystallinity of PTT. However, it enhanced the orientation of PTT/PET blends drawn at below the glass transition temperature of PET. This lead to the increase of tensile modulus and tensile strength of PTT/PET blends. The shrinkage increased with increasing orientation, which might be minimized by the development of crystalline morphology of PTT in the course of cold drawing.

Sorption Equilibria of C. I. Disperse Yellow 54 Dye between Supercritical Carbon Dioxide and PTT and PET Textiles (초임계이산화탄소와 PTT및 PET섬유 사이에서 C. I. Disperse Yellow 54 염료의 수착평형)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.173-179
    • /
    • 2007
  • In this study the amount of equilibrium sorption of C.I. Disperse Yellow 54 dye in the polymeric textiles such as PTT (poly(trimethylene terephthalate)) and PET (poly(ethylene terephthalate)) textiles was measured in the presence of supercritical carbon dioxide at different temperatures, pressures, and time. The amount of dye sorption increased with temperature and pressure in both PTT and PET textiles, but the increasing rate decreased with pressure. The PTT textile has much larger dye sorption than PET textile. The increasing rate of dye sorption decreased with time at same temperature and pressure for both PTT and PET textiles.

  • PDF

The Physical Properties and Dyeability of Poly(trimethylene terephthalate) Fibers (Poly(trimethylene terephthalate) 섬유의 물성과 염색성)

  • 윤석한;김태경;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 2001
  • The mechanical properties and dyeability of Poly(trimethylene terephthalate)(PTT) were investigated and compared to PET. Glass transition temperature of PTT was lower than that of PET, because amorphous region of PTT is mote flexible. n has smaller molecular and specific stress and larger strain than those of PET, due to the difference of molecular structure. Dyeing transition temperature of PTT was lower by $20^\circ{C}$ than that of PET. Because PTT has flexible chain and zigzag structure, dyeing Fate of PTT is faster than PET and dyeing of PTT is begun at lower temperature. As the hydrophobicity of disperse dyes increased, the ratio of equilibrium dye uptake on PTT to that on PET was increased.

  • PDF

Preparation and Physical Properties of Stretch Fabrics Using with Poly(trimethylene terephthalate) Fiber (Poly(trimethylene terephthalate) 섬유를 이용한 신축성직물의 제조 및 물성)

  • Choi, Hee
    • Fashion & Textile Research Journal
    • /
    • v.5 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • The stretch fabrics were made by the use of PTT[Poly(trimethylene terephthalate)] fibers and changes in their physical properties were analysed. Tenacity and elongation of D-1(PTT DTY) yarn were 3.32 g/d and 50.4%, respectively, while these of D-2(PTT+CDP DTY) yarn were 2.46 g/d and 32.1%, respectively. The tenacity of PTT-1 and PET-1 fabrics was similar, but the elongation of PTT-1 and PET-1 fabrics was 75% and 44%, respectively. Thus, the elongation of PTT-1 fabric was two times higher than those of PET-1 fabric. In addition, the elastic recovery at 20% elongation of PTT-1, PTT-2 and PET-1 fabric was 85.0%, 80.5% and 60.0%, respectively, indicating that so PTT-1 fabric showed better elastic recovery. The light, wash, and abrasion fastness of PTT-1 and PTT-2 fabrics were above Grade 3, Grade 4-5, and Grade 4-5, respectively. Therefore, there was little effect of substance on the fastness.

Change of physical property on PET and PTT yarn after heat treatment (PET와 PTT사의 열처리후 물성변화)

  • 김일래;김광수
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.337-338
    • /
    • 2003
  • PTT(poly trimethylene terephthalate)섬유는 PET(polyethylene terephthalate)섬유에 비하여 탄성 (elasticity)가 우수하고 염색성이 PET와 유사한 점에서 차세대섬유로 분류되고 있다. 분자의 구조가 trans-trans의 fully extended chain(rod shape)형태인 PET에 비하여 trans-gauche-gauche-trans의 스프링과 같은 extended zigzag(helix shape)이어서 탄성회복성이 우수하다. 또한 PTT의 탄성계수값은 PET에 비하여 $\frac{1}{2}$정도이다. 의복을 착용중 신장과 수축을 반복하는 과정에서 섬유는 탄성을 점차 상실하게 되는데, 이 응력완화의 변화특성에 따라서 착용감이 영향을 끼친다. (중략)

  • PDF

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

The Interpretation of Dyeing Behavior of Poly(trimethylene terephthalate) Fiber with a Disperse Dye (분산염료에 의한 Poly(trimethylene terephthalate) 섬유의 염색거동의 해석)

  • 윤석한;김태경;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.13 no.4
    • /
    • pp.249-255
    • /
    • 2001
  • To interpret the dyeing behavior of PTT fiber with C. I. Disperse Violet 1, the thermodynamic Parameters of dyeing, such as standard affinity, heat of dyeing(enthalpy change), entropy change, diffusion coefficient, and activation energy of diffusion, were obtained from isotherms and dyeing rates at various temperatures and compared with those of PET fiber. The heat of dyeing(enthalpy change) and the entropy change of PTT fiber showed smaller negative values than those of PET fiber. This means that the dye molecules in the PTT fiber are combined more loosely than in the PET fiber and that is due to the flexibility of polymer chains of PTT fiber. The diffusion coefficients of C. I. Disperse Violet 1 into the PTT fiber were larger than those for PET fiber, and the activation energy of diffusion on PTT fiber was smaller than that on PET fiber.

  • PDF

Diffusion rate of C. I. Disperse Yellow 54 Dye in PTT and PET Textiles in the Presence of Supercritical Carbon Dioxide (초임계이산화탄소에 의한 PTT와 PET섬유 내에서의 C. I. Disperse Yellow 54염료의 확산속도)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.244-250
    • /
    • 2007
  • Sorption of C. I. Disperse Yellow 54 dye in poly(trimethylene terephthalate) (PTT) and poly (ethylene terephthalate) (PET) textile fibers were measured at various pressures, temperatures, and times in the presence of supercritical carbon dioxide and thereby the diffusivities of the dye in the fibers were calculated. The diffusivity of dye in the polymeric fibers was very low, only in the order of $10^{-12}\;cm^2/sec$, but increased with increasing temperature at constant pressure and with increasing pressure at constant temperature. The diffusivity in PTT fibers were about 1.5 to 3 times as large as that in PET fibers. As the fiber was very thin, the dye distribution in the fiber was almost uniform everywhere inside the fiber.

  • PDF

Comparison of Mechanical Properties between PET and PTT Warp Knitted Fabrics (PET, PTT 경편성물의 역학적 특성치 비교)

  • 정현기;윤혜신;박신웅;강복춘
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.287-288
    • /
    • 2003
  • 경편성 분야는 생산 특성상 소재 원사가 균제하고 강도가 높아야 하므로 주로 사용할 수 있는 원사가 폴리에스테르, 나일론 등의 합섬 필라멘트사에만 주로 한정되어, 새로운 소재를 찾기 위해 노력 해왔다. 그러므로 경편성은 PTT 원사를 대량으로 소비할 수 있는 잠재적인 가장 큰 시장이다. 그러나 PTT를 경편성의 소재로 사용하여 새로운 수요를 창출하기 위해서는 PTT 경편성물과 기존 합성 필라멘트를 소재로 한 경편성물의 물성과 태의 차이가 우선 파악되어야 하며, 정경, 편성 및 형태안정 과정(relaxation)에 관한 연구도 진행하여 새로운 소재에 알맞은 공정 조건이 설정되도록 해야 한다. (중략)

  • PDF