• 제목/요약/키워드: PEMFCs

검색결과 136건 처리시간 0.023초

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

동결/해동 조건에서 고분자막의 특성 변화 연구 (PROPERTY CHANGES OF POLYMER ELECTROLYTE MEMBRANES WITH FREEZE/THAW CYCLES)

  • 박구곤;임남윤;손영준;박진수;이원용;김세훈;임태원;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.281-283
    • /
    • 2005
  • Water management in polymer electrolyte membrane fuel cells(PEMFCs) is one of the most challenging issues. Freeze start-up in the automotive applications is also important research topic in the PEMFC field. Transportation of proton and separation of reactant gases are main roles of polymer electrolyte membranes. It has been known that water in the membrane conducts as a vehicle for the proton transportation. At sub-zero temperature, the frozen water blocks the access of reactant gases to the active sites of electrode as well as occurs the physical destruction of fuel cell structures. In this study, property changes of electrolyte membranes in the freeze conditions $(at\;-25^{\circ}C)$ were investigated. For the various amount of water contained membranes, the property changes, especially for the proton conductivity, were observed after several times of freeze/thaw$(-25\~80^{\circ}C)$ cycle.

  • PDF

고분자 전해질막 연료전지 분리판 성능평가 (The performance evaluation of the separator for PEMFCs)

  • 황호정;양태현;윤영기;이원용;설용건;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.288-290
    • /
    • 2005
  • 고분자전해질 연료전지는 자동차, 분산전원 및 이동전원 등에 대한 차세대 에너지원으로 채택 가능성이 높아지고 있다. 고분자전해질 연료전지 시스템의 상용화를 위한 가장 큰 걸림돌 중 한 가지로 가격문제를 들 수 있는데, 연료전지 스택이 전체 가격의 약 $50\%$를 차지하고 있다. 또한 스택을 구성하는 요소 중 분리판의 가격 비중은 약 $30\%$를 차지하고 있어, 분리판의 생산단가 저감은 연료전지의 상용화를 위해 반드시 해결해야 될 문제이다. 본 연구에서는 탄소를 재료로 하는 분리판에 대한 연구를 수행하였으며, 압축성형방식으로 제작된 다양한 복합재료 분리판 및 흑연 분리판에 대한 기계적 강도, 물리적 특성, 화학적 안정성을 조사하였으며, 가흑 운전 시 분리판내에 함유되어있는 고분자 성분의 침출에 의한 연료전지의 성능변화가 발생하는지 확인하였으며 이에 대한 단위전지의 성능평가를 수행하였다. 이러한 결과를 토대로 최적의 압축성형 복합체 분리판 제작 방향을 제시하고, 보다 신뢰성 있는 분리판 성능평가 기준을 확립하고자 하였다.

  • PDF

이동 전원용 공랭식 고분자 연료전지의 제작 및 운전 특성 연구 (Operating characteristics of an air cooling PEMFC for portable application)

  • 손영준;박구곤;양태현;윤영기;이원용;임성대;김창수
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.72-78
    • /
    • 2005
  • Optimal design and proper operation are important to get aimed output power of a polymer electrolyte membrane fuel cell (PEMFC) stack. An air cooling fuel cell stack is widely used in sub kW PEMFC systems. The purpose of this study is to analyze operating conditions affecting the performance of the air cooling PEMFC which is designed for portable application. In portable applications, air cooling stack is difficult to maintain well balanced operating conditions. The importart parameters are the relative humidity, the temperature of the stack, the utilization of reactant gas and so on. in this study, a 500W air cooling PEMFC was fabricated and tested to evaluate the design performance and to determine optimal operating conditions. Moreover, basic modeling also is carried out. These results can be used 3s design criteria and optimal operating conditions for portable PEMFCs

  • PDF

연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성 (Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell)

  • 박인수;이국승;최백범;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

마이크로파-폴리올법을 이용한 고분자 전해질 연료전지용 Pt/MWCNTs 촉매의 제조 및 이의 특성분석 (Synthesis and Study of Pt/MWCNTs Catalysts by Using Microwave Assisted Polyol Method for PEM Fuel Cells)

  • 이태규;허승현
    • 전기화학회지
    • /
    • 제15권4호
    • /
    • pp.264-269
    • /
    • 2012
  • 본 연구에서는 50 wt%에 달하는 매우 높은 Pt 담지량에서도 장기내구성이 우수한 연료전지용 Pt/MWCNT 촉매를 마이크로파를 이용한 폴리올법을 이용하여 제조하였다. X선 회절분석법과 투과전자현미경 분석결과 마이크로파 조사시간이 늘어남에 따라 Pt의 크기가 증가하였다. 마이크로파 조사시간이 10분, 20분, 30분일 경우 Pt 크기는 각각 4.1, 4.9, 8.5 nm로 나타났다. 마이크로파를 사용하지 않은 기존 폴리올 방법에 의해 제조된 촉매와 비교하였을 경우 Pt 분산도와 장기내구성이 증가한 것으로 나타났다.

직접 스크린 프린팅법으로 제조된 고분자 전해질 연료전지의 고성능 전극 (High Performance Electrode of Polymer Electrolyte Membrane Fuel Cells Prepared by Direct Screen Printing Process)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.65-69
    • /
    • 2004
  • 스크린 프린팅법은 고분자 전해질 연료전지의 전극 촉매층 제조의 편리함과 적용성의 면에서 가장 일반적인 방법 중에 하나이다. 본 논문은 기존의 방법과 비교하여 매우 낮은 백금 함침량을 가지기 때문에 경쟁적이고, 부가적인 공정 없이 swelling 문제를 간단하게 억제시켜 개선된 스크린 프린팅 법을 제안하였다. 특히, 가스켓 일체형 MEA는 고분자 전해질 연료전지의 작동 중에 가스 침투의 영향을 방지하여 고전류 영역에서 기존의 방법으로 제조된 MEA보다 높은 성능을 가지게 제작하였다. 이와 같은 방법들은 보다 간단하고 빠른 제조의 기회를 준다.

  • PDF

Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향 (Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method)

  • 김경희;조은애;한종희;김성현;엄광섭
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.

저가형 조립 분리판의 개발 (Development of the Low Cost Assembled Separator)

  • 황용신;이주형;지상훈;박준호;이대영;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • This study considers the feasibility of using the low cost assembled separator. The graphite plate has been widely used as the separator in the field of PEMFCs(Polymer electrolyte membrane fuel cell) industry because of its excellent material properties such as good corrosion resistance, good electrical conductance and so on. However, there are some problems for the commercialization due to its poor cost effectiveness for the large volume manufacturing and lack of mechanical strength. From this respect, this study has focused on the manufacturing technology in order to reduce the price for the commercialization of separator. This study also shows that the assembled separator of the suggested structure, which is composed of grafoil and PC(PolyCarbonate) materials, could be manufactured at low cost enough for the mass production. The flow fields produced by cutting foils and the base plates of the separators were simply made by mechanical work.

  • PDF