• Title/Summary/Keyword: PECVD method

Search Result 204, Processing Time 0.029 seconds

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

A Study on the Characteristics of μc-Si:H Films Prepared by Multistep Deposition Method using SiH4/H2 Gas Mixture (SiH4/H2 혼합기체를 Multistep 방식으로 증착한 수소화된 실리콘 박막의 특성 연구)

  • Kim, Taehwan;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • In this study, we deposited and investigated ${\mu}c$-Si:H thin films prepared by Plasma Enhanced Chemical Vapor Deposition(PECVD) system. To deposition silicon thin films, we controlled $SiH_4$ gas concentration, RF input power, and heater temperature. According to the experiments, the more $SiH_4$ gas concentration increased, deposition rate also increased but crystalline property decreased at the same conditions. In the RF input power case, deposition rate and crystalline property increased together when the input power increased from 100[W] to 300[W]. If RF input power was 300[W], deposition rate has reached saturation point. In the heater temperature, deposition rate increased when heater temperature increased. Crystalline property maintained a certain level until heater temperature was $250[^{\circ}C]$. And then it was a suddenly increased. Multistep method has been proposed to improve the quality of ${\mu}c$-Si:H thin film. $SiH_4$ gas was injected with a time interval. According to the experiments, crystallite ratio improve about 20~60[%] and photo conductivity increased up to six times.

RF Power Conversional System for Environment-friendly Ferrite Core Inductively Coupled Plasma Generator (환경친화형 페라이트 코어 유도결합 플라즈마 고주파 전력 변환 장치)

  • Lee, Joung-Ho;Choi, Dae-Kyu;Kim, Soo-Seok;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.6-14
    • /
    • 2006
  • This paper is a study about a proper method of plasma generation to cleaning method and a high frequency power equipment circuit to generation of plasma that used cleaning of chamber for TFT-LCD PECVD. The high density plasma required for cleaning causes a possibility of high density plasma more than $1{\times}10^{11}[EA/cm^3]$. It apply a ferrite core of ferromagnetic body to a existing ICP form. In case of power transfer equipment on 400[kHz] high frequency to generation of plasma it makes certain a stable switching operation in condition of plasma through using a inverter form for general purpose HB. And it demonstrates the performance of power transfer equipment using methods of measurement which use a transformer of series combination the density of plasma and the rate of dissolution of $NF_3$ in condition of $A_r\;and\;NF_3$.

A New Surface Micromachining Technology for Low Voltage Actuated Switch and Mirror Arrays (저전압 구동용 전기스위치와 미러 어레이 응용을 위한 새로운 표면미세가공기술)

  • Park, Sang-Jun;Lee, Sang-Woo;Kim, Jong-Pal;Yi, Sang-Woo;Lee, Sang-Chul;Kim, Sung-Un;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2518-2520
    • /
    • 1998
  • Silicon can be reactive ion etched (RIE) either isotropically or anisotropically. In this paper, a new micromachining technology combining these two etching characteristics is proposed. In the proposed method, the fabrication steps are as follows. First. a polysilicon layer, which is used as the bottom electrode, is deposited on the silicon wafer and patterned. Then the silicon substrate is etched anisotropically to a few micrometer depth that forms a cavity. Then an PECVD oxide layer is deposited to passivate the cavity side walls. The oxide layers at the top and bottom faces are removed while the passivation layers of the side walls are left. Then the substrate is etched again but in an isotropic etch condition to form a round trench with a larger radius than the anisotropic cavity. Then a sacrificial PECVD oxide layer is deposited and patterned. Then a polysilicon structural layer is deposited and patterned. This polysilicon layer forms a pivot structure of a rocker-arm. Finally, oxide sacrificial layers are etched away. This new micromachining technology is quite simpler than conventional method to fabricate joint structures, and the devices that are fabricated using this technology do not require a flexing structure for motion.

  • PDF

PLASMA POLYMERIZED THIN FILMS GROWN BY PECVD METHOD AND COMPARISON OF THEIR ELECTROCHEMICAL PROPERTIES

  • I.S. Bae;S.H. Cho;Park, Z. T.;Kim, J.G.;B. Y. Hong;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.119-119
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and Copper substrates at 25 ∼ 100 $^{\circ}C$ using cyclohexane and ethylcyclohexane precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 20∼50 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency (P$\_$k/), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest P$\_$k/ value of plasma polymerized ethylcyclohexane film (92.1% at 50 W) was higher than that of the plasma polymerized cyclohexane film (85.26% at 50 W), indicating inhibition of oxygen reduction. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the ethylcyclohexane films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C-V data measured at 1㎒. From the electrical property measurements such as I-V ana C-V characteristics, the minimum dielectric constant and the best leakage current of ethylcyclohexane thin films were obtained to be about 3.11 and 5 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$ and cyclohexane thin films were obtained to be about 2.3 and 8 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$.

  • PDF

Homeotropic Alignment Effect for Nematic Liquid Crystal on the $SiO_x$ Thin Film Layer by New Ion beam Exposure (새로운 이온빔을 이용한 $SiO_x$ 박막 표면의 액정 배향 효과)

  • Choi, Sung-Ho;Kim, Byoung-Yong;Han, Jin-Woo;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.311-312
    • /
    • 2006
  • We studied homeotropic alignment effect for a nematic liquid crystal (NLC) on the $SiO_x$, thin film irradiated by the new ion beam method $SiO_x$ thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) and were treated by the DuoPIGatron ion source. A uniform liquid crystal alignment effect was achieved over 2100 eV ion beam energy. Tilt angle were about $90^{\circ}$ and were not affected by various ion beam energy.

  • PDF

Tribolgical Characteristics of DLC Film using Substrates with Varying Hardness

  • Park, Jae-Hong;Jang, Beom-Taek;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.31-35
    • /
    • 2008
  • DLC (Diamond Like Carbon) films have predominant tribological properties like a high hardness, low friction and high chemical resistance; therefore, DLC films are applied in a wide range of industrial fields. This paper evaluated the characteristics of DLC films deposited on bearing steel with different hardness by RF-PECVD (Radio Frequency - Plasma Enhanced Chemical Vapor Deposition) method. Si-interlayer was deposited on bearing steel to improve adhesion strength by RF-Sputtering method. The DLC film structures were analyzed with Raman spectra and Gaussian function. Adhesion strength of DLC films was measured with a scratch tester. Friction and wear test were carried out with a ball-on -disc type to investigate the tribological characteristics. Experimental results showed that DLC films deposited on bearing steel under same deposition condition have typical structure DLC films regardless of hardness of bearing steel. Adhesion strength of DLC film is increased with a hardness of bearing steel. Friction coefficient of DLC film showed lower at the high hardness of bearing steel.

Thin Film Transistor fabricated with CIS semiconductor nanoparticle

  • Kim, Bong-Jin;Kim, Hyung-Jun;Jung, Sung-Mok;Yoon, Tae-Sik;Kim, Yong-Sang;Choi, Young-Min;Ryu, Beyong-Hwan;Lee, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1494-1495
    • /
    • 2009
  • Thin Film Transistor(TFT) having CIS (CuInSe) semiconductor layer was fabricated and characterized. Heavily doped Si was used as a common gate electrode and PECVD Silicon nitride ($SiN_x$) was used as a gate dielectric material for the TFT. Source and drain electrodes were deposited on the $SiN_x$ layer and CIS layer was formed by a direct patterning method between source and drain electrodes. Nanoparticle of CIS material was used as the ink of the direct patterning method.

  • PDF