• Title/Summary/Keyword: PDX3

Search Result 10, Processing Time 0.028 seconds

Validity of patient-derived xenograft mouse models for lung cancer based on exome sequencing data

  • Kim, Jaewon;Rhee, Hwanseok;Kim, Jhingook;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.3.1-3.8
    • /
    • 2020
  • Patient-derived xenograft (PDX) mouse models are frequently used to test the drug efficacy in diverse types of cancer. They are known to recapitulate the patient characteristics faithfully, but a systematic survey with a large number of cases is yet missing in lung cancer. Here we report the comparison of genomic characters between mouse and patient tumor tissues in lung cancer based on exome sequencing data. We established PDX mouse models for 132 lung cancer patients and performed whole exome sequencing for trio samples of tumor-normal-xenograft tissues. Then we computed the somatic mutations and copy number variations, which were used to compare the PDX and patient tumor tissues. Genomic and histological conclusions for validity of PDX models agreed in most cases, but we observed eight (~7%) discordant cases. We further examined the changes in mutations and copy number alterations in PDX model production and passage processes, which highlighted the clonal evolution in PDX mouse models. Our study shows that the genomic characterization plays complementary roles to the histological examination in cancer studies utilizing PDX mouse models.

Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1 (hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화)

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Kwon, Dae-Jin;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

Involvement of Pyridoxine/Pyridoxamine 5′- Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root

  • Kim, Gyuree;Jang, Sejeong;Yoon, Eun Kyung;Lee, Shin Ae;Dhar, Souvik;Kim, Jinkwon;Lee, Myeong Min;Lim, Jun
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1033-1044
    • /
    • 2018
  • As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5′-phosphate (PNP)/pyridoxamine 5′-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5′-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.

Study on the Selection of Solvent for Purificatino of p-Dioxanone by Crystallization Method (결정화에 의한 파라디옥산온의 정제를 위한 용매선정에 관한 연구)

  • kim, Sung-Il;Koh, Joo-young;Kim, Chul-Ung;Koh, Jae-Cheon;Park, So-Jin;Seo, Young-Jong;Choi, Byung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.581-587
    • /
    • 2005
  • In order to obtain a highly purified p-dioxanone (PDX) as monomer of biodegradable polymer, suitable solvent must be selected. The selection was based on the solubility of impurities, and partial layer melt crystallization were carried out under the presence of solvent. The solubility of PDX in various solvents such as ethyl acetate, tetrahydrofuran, acetone, alcohols (methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol) were measured over the temperature range of $-10{\sim}15^{\circ}C$. As solubility parameters, the mixing and dissolution enthalpy between the PDX and the solvents was studied based on empirical equations and the regular solution theory. The solubility and the temperature dependency of the solubility with the solvents of acetone, ethylacetate, and tetrahydrofuran of PDX were shown to have relatively high values compared to the alcohol type solvents. Also, in same alcohols, the smaller molecules and higher polarity gave higher solvency. In partial layer melt crystallization, small amount of ethylacetate selectively dissolved impurities and gave highly purified p-dioxanone, over 99.9% purity.

In vitro Anti-diabetic Effects of Crude Extracts of Platycodi Radix (In vitro에서 길경 추출 분획물의 항당뇨 효과 조사)

  • Ko, Byoung-Seob;Kwon, Dae-Young;Hong, Sang-Mee;Park, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.701-707
    • /
    • 2007
  • Anti-diabetic effect of Platycodi radix (PR) extract fractions was determined if vitro by investigating insulin-like action, insulin sensitizing action, glucose-stimulated insulin secretion, gene expression related to ${\beta}-cell$ function and mass, and ${\alpha}$-glucoamylase suppressing action. Insulin-like activity was not promoted by the treatment of PR methanol factions in 373-L1 fibroblast. However, treatment with 0, 20 and 100% PR methanol fractions along with 1 ng/mL insulin increased insulin-stimulated glucose uptake in 373-L1 adipocytes. In addition, the treatment of 0% and 100% methanol fractions along with differentiation inducers significantly increased the differentiation of 373-L1 fibroblasts to adipocytes. These fractions may contain insulin sensitizer. The 20%, 80% and 100% methanol fractions enhanced glucose-stimulated insulin secretion in Min6 cells, insulin secreting cell line. This was related to the mechanism to promote glucose sensing and ${\beta}-cell$ proliferation, which was regulated by the induction of IRS-2, glucokinase and PDX-1 genes. As expected, 20, 80 and 100% methanol fractions increased mRNA levels of IRS-2, glucokinase and PDX-1 genes. However, PR fractions did not affect the ${\alpha}-glucoamylase$ activity in vitro. These data suggested that PR extract fractions have anti-diabetic actions through improving insulin sensitization, glucose-stimulated insulin secretion, and ${\beta}-cell$ proliferation. Therefore, PR extracts can be beneficial for anti-diabetic treatment in lean diabetic patients.

POSITIVE SOLUTIONS TO p-KIRCHHOFF-TYPE ELLIPTIC EQUATION WITH GENERAL SUBCRITICAL GROWTH

  • Zhang, Huixing;Zhang, Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1023-1036
    • /
    • 2017
  • In this paper, we study the existence of positive solutions to the p-Kirchhoff elliptic equation involving general subcritical growth $(a+{\lambda}{\int_{\mathbb{R}^N}{\mid}{\nabla}u{\mid}^pdx+{\lambda}b{\int_{\mathbb{R}^N}{\mid}u{\mid}^pdx)(-{\Delta}_pu+b{\mid}u{\mid}^{p-2}u)=h(u)$, in ${\mathbb{R}}^N$, where a, b > 0, ${\lambda}$ is a parameter and the nonlinearity h(s) satisfies the weaker conditions than the ones in our known literature. We also consider the asymptotics of solutions with respect to the parameter ${\lambda}$.

Purification of p-Dioxanone from p-Dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization (경막형 용융결정화에 의한 파라디옥사논과 디에틸렌글리콜 혼합물로부터 파라디옥사논의 정제)

  • Kim, Sung-Il;Kim, Chul-Ung;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • In order to purify diethylene glycol as main impurity included in p-dioxanone, SLE (solid-liquid equilibria) and mixture density on two components system of p-dioxanone and diethylene glycol were measured and a layered melt crystallization with seed has been applied. The SLE of p-dioxanone and diethylene glycol were a simple eutectic system and the temperature and PDX concentration at eutectic point were 0.08 and 246 K, respectively. Densities of their binary mixtures were well fitted by the best correlation equation, ${\rho}_l=0.405+1.361x+0.002T-0.004xT$. In the melt crystallization, the growth rate (G) was proportional to the 1.5th power of the subcooling degree. The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to increase with increasing the growth rate and initial p-dioxanone concentration. And also, $K_{eff}$ was correlated with Z function using Wintermantel's model such as $K_{eef}=-0.0604+6.392{\times}Z$. Finally, PDX purity through the optimization of this process can be obtained over 99%.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Glucocorticoid treatment independently affects expansion and transdifferentiation of porcine neonatal pancreas cell clusters

  • Kim, Ji-Won;Sun, Cheng-Lin;Jeon, Sung-Yoon;You, Young-Hye;Shin, Ju-Young;Lee, Seung-Hwan;Cho, Jae-Hyoung;Park, Chung-Gyu;Yoon, Kun-Ho
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • The purpose of this study was to determine the effects of duration and timing of glucocorticoid treatment on the expansion and differentiation of porcine neonatal pancreas cell clusters (NPCCs) into ${\beta}$-cells. After transplantation of NPCCs, the ductal cyst area and ${\beta}$-cell mass in the grafts both showed positive and negative correlations with duration of dexamethasone (Dx) treatment. Pdx-1 and HNF-3${\beta}$ gene expression was significantly downregulated following Dx treatment, whereas PGC-1${\alpha}$ expression increased. Pancreatic duct cell apoptosis significantly increased following Dx treatment, whereas proliferation did not change. Altogether, transdifferentiation of porcine NPCCs into ${\beta}$-cells was influenced by the duration of Dx treatment, which might have been due to the suppression of key pancreatic transcription factors. PGC-1${\alpha}$ plays an important role in the expansion and transdifferentiation of porcine NPCCs, and the initial 2 weeks following transplantation of porcine NPCCs is a critical period in determining the final ${\beta}$-cell mass in grafts.

Valproic Acid Exposure of Pregnant Rats During Organogenesis Disturbs Pancreas Development in Insulin Synthesis and Secretion of the Offspring

  • Komariah, Komariah;Manalu, Wasmen;Kiranadi, Bambang;Winarto, Adi;Handharyani, Ekowati;Roeslan, M. Orliando
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Valproic acid (VPA) plays a role in histone modifications that eventually inhibit the activity of histone deacetylase (HDAC), and will affect the expressions of genes Pdx1, Nkx6.1, and Ngn3 during pancreatic organogenesis. This experiment was designed to study the effect of VPA exposure in pregnant rats on the activity of HDAC that controls the expression of genes regulating the development of beta cells in the pancreas to synthesize and secrete insulin. This study used 30 pregnant Sprague-Dawley rats, divided into 4 groups, as follows: (1) a control group of pregnant rats without VPA administration, (2) pregnant rats administered with 250 mg VPA on day 10 of pregnancy, (3) pregnant rats administered with 250 mg VPA on day 13 of pregnancy, and (4) pregnant rats administered with 250 mg VPA on day 16 of pregnancy. Eighty-four newborn rats born to control rats and rats administered with VPA on days 10, 13, and 16 of pregnancy were used to measure serum glucose, insulin, DNA, RNA, and ratio of RNA/DNA concentrations in the pancreas and to observe the microscopical condition of the pancreas at the ages of 4 to 32 weeks postpartum with 4-week intervals. The results showed that at the age of 32 weeks, the offspring of pregnant rats administered with 250 mg VPA on days 10, 13, and 16 of pregnancy had higher serum glucose concentrations and lower serum insulin concentrations, followed by decreased concentrations of RNA, and the ratio of RNA/DNA in the pancreas. Microscopical observations showed that the pancreas of the rats born to pregnant rats administered with VPA during pregnancy had low immunoreaction to insulin. The exposure of pregnant rats to VPA during pregnancy disturbs organogenesis of the pancreas of the embryos that eventually disturb the insulin production in the beta cells indicated by the decreased insulin secretion during postnatal life.