• Title/Summary/Keyword: PDF1.2

Search Result 110, Processing Time 0.024 seconds

Population Pharmacokinetics for Gentamicin in American and Korean-American Appendicitis Patients Using Nonparametric Expected Maximum(NPEM) Algorithm (비모수적 기대최대치(NPEM)연산방법에 의한 미국인과 재미동포 충수돌기염 환자에게 겐타마이신의 모집단 약물동태학)

  • ;;Stanford Jhee;Gill, Mark A.
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.103-112
    • /
    • 1995
  • Population pharmacokinetics for gentamicin were compared with 24 American patients (16 male and 8 female) and 16 Korean-American appendicitis patients(12 male and 4 female). Two to six blood specimens were collected from all patients at the following times: just before a regularly scheduled infusion and at 1/2 hour after the end of a 1/2 hour infusion. Nonparametric expected maximum(NPEM) algorithm for population modeling was used. The estimated parameters were the elimination rate constant(K), the slope of the relationship between K versus creatinine clearance(KS), the apparent volume of distribution(V), the slope of the relationship between V versus weight(VS), gentamicin clearance(CL) and the slope of the relationship between CL versus creatinine clearance and the VS(CS). The output includes a 3-dimensional plot of the joint probability density function(PDF), two marginal PDF, means, medians, modes, variance, skewness, kurtosis, and CV%. The mean K(KS) were 0.424$\pm$0.139(0.00429$\pm$0.00164) and 0.411$\pm$0.135 hr$^{-1}$ (0.00475$\pm$0.00180[hr.mL/min/1.73m$^{2}]^{-1}$) for American and Korean-American populations, respectively. The mean V(VS) were not different at 15.6$\pm$4.77(0.233$\pm$0.0526) and 15.1$\pm$3.84L(0.239$\pm$0.0492 L/kg) for American and Korean-American populations, respectively (P>0.2). The mean CL (CS) were 6.28$\pm$1.85(0.0634$\pm$0.0191) and 5.70$\pm$1.77 L/hr(0.0701$\pm$0.0215 L/kg[hr.mL/min/1.73m$^{2}$)] for American and Korean-American populations, respectively. There are no differences in gentamicin pharmacokinetics between American and Korean-American Appendicitis patients.

  • PDF

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.657-666
    • /
    • 2020
  • A reliable and cost-effective technique for the development of corrosion damage model is introduced to predict nonlinear time-dependent corrosion wastage of steel structures. A detailed explanation on how to propose a generalised mathematical formulation of the corrosion model is investigated in this paper (Part I), and verification and application of the developed method are covered in the following paper (Part II) by adopting corrosion data of a ship's ballast tank structure. In this study, probabilistic approaches including statistical analysis were applied to select the best fit probability density function (PDF) for the measured corrosion data. The sub-parameters of selected PDF, e.g., the largest extreme value distribution consisting of scale, and shape parameters, can be formulated as a function of time using curve fitting method. The proposed technique to formulate the refined time-dependent corrosion wastage model (TDCWM) will be useful for engineers as it provides an easy and accurate prediction of the 1) starting time of corrosion, 2) remaining life of the structure, and 3) nonlinear corrosion damage amount over time. In addition, the obtained outcome can be utilised for the development of simplified engineering software shown in Appendix B.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Analysis on the Performance of $2{\times}1$ Alamouti Scheme in Time-varying and Spatially Correlated Channels (시변 및 공간 상관 채널 환경에서 $2{\times}1$ 알라마우티 구조 (Alamouti Scheme)의 성능 분석)

  • Lee, Eun-Ju;Park, Jae-Don;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.539-542
    • /
    • 2011
  • In this paper, we have implemented a performance analysis of $2{\times}1$ Alamouti scheme suggested by Alamouti, composed of the transmit space-time code and the simple linear decoding processing, in perfectly time-varying and spatially correlated channels. In addition, we derived the closed-form probability density function (PDF) of the output signal-to-noise ratio (SNR) and the outage probability of the Alamouti scheme as a function of the spatial correlation coefficient in the consideration of no correlation in time. As a result, it was found that the performance of the Alamouti scheme could be significantly degraded particularly in the case that the channels are time-varying and spatially correlated.

  • PDF

ON CHARACTERIZATIONS OF PARETO AND WEIBULL DISTRIBUTIONS BY CONSIDERING CONDITIONAL EXPECTATIONS OF UPPER RECORD VALUES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.243-247
    • /
    • 2014
  • Let {$X_n$, $n{\geq}1$} be a sequence of i.i.d. random variables with absolutely continuous cumulative distribution function(cdf) F(x) and the corresponding probability density function(pdf) f(x). In this paper, we give characterizations of Pareto and Weibull distribution by considering conditional expectations of record values.

Extraction of optimal time-varying mean of non-stationary wind speeds based on empirical mode decomposition

  • Cai, Kang;Li, Xiao;Zhi, Lun-hai;Han, Xu-liang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • The time-varying mean (TVM) component of non-stationary wind speeds is commonly extracted utilizing empirical mode decomposition (EMD) in practice, whereas the accuracy of the extracted TVM is difficult to be quantified. To deal with this problem, this paper proposes an approach to identify and extract the optimal TVM from several TVM results obtained by the EMD. It is suggested that the optimal TVM of a 10-min time history of wind speeds should meet both the following conditions: (1) the probability density function (PDF) of fluctuating wind component agrees well with the modified Gaussian function (MGF). At this stage, a coefficient p is newly defined as an evaluation index to quantify the correlation between PDF and MGF. The smaller the p is, the better the derived TVM is; (2) the number of local maxima of obtained optimal TVM within a 10-min time interval is less than 6. The proposed approach is validated by a numerical example, and it is also adopted to extract the optimal TVM from the field measurement records of wind speeds collected during a sandstorm event.

Algorithm of Decoding the Base 256 mode in Two-Dimensional Data Matrix Barcode (이차원 Data Matrix 바코드에서 Base 256 모드의 디코딩 알고리즘)

  • Han, Hee June;Lee, Hyo Chang;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Conventional bar code has the appearance of line bars and spaces, called as one-dimensional bar code. In contrast, the information in two-dimensional bar code is represented by either a small, rectangular or square with the types of mosaic and Braille. The two-dimensional bar code is much more efficient than one-dimensional bar code because it can allow to store and express large amounts of data in a small space and so far there is also a little information about decoding the Data Matrix in base 256 mode. According to the ISO international standards, there are four kinds of bar code: QR code, Data Matrix, PDF417, and Maxi code. In this paper, among them, we focus on describing the basic concepts of Data Matrix in base 256 mode, how to encode and decode them, and how to organize them in detail. In addition, Data Matrix can be organized efficiently depending on the modes of numeric, alphanumeric characters, and binary system and expecially, we focus on describing how to decode the Data Matrix code by four modes.

Estimation of the parameter in an Exponential Distribution using a LINEX Loss

  • Woo, Jung-Soo;Lee, Hwa-Jung;Eun, Kab-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • A Bayes estimator of the scale parameter in an exponential distribution will be considered by a LINEX error, then the risk of the Bayes estimator using a LINEX loss will be compared with that of a Bayes estimator using a square error.

  • PDF

Conditional Sampling Measurement to Identify Flame Structures in Turbulent Combustion (난류 화염 구조 규명을 위한 조건 평균 측정법)

  • Huh Kang Y.
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.8-11
    • /
    • 2004
  • Conditional sampling measurement is required for conditional averages as well as unconditional Favre averages to resolve different flame structures of turbulent combustion. A Favre average can be obtained as an integral of conditional average and Favre PDF in terms of the mixture fraction, which is a preferred choice as a sampling variable in diffusion controlled turbulent combustion. MILD combustion data are presented as an example for a conditionally averaged data set and comparison with CMC calculation results.

  • PDF

EMPIRICAL BAYES TESTING FOR MEAN LIFE TIME OF RAYLEIGH DISTRIBUTION

  • Liang, TaChen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.1-15
    • /
    • 2007
  • Consider a Rayleigh distribution with $$pdf\;p(x/{\theta})\;=\;2x{\theta}^{-1}\;{\exp}\;({-x^2}/{\theta})$$ and mean lifetime ${\mu}\;=\;\sqrt{\pi\theta}/2$. We study the two-action problem of testing the hypotheses $H_{0}\;:\;{\mu}{\leq}{\mu}_{0}$ against $H_{1}\;:\;{\mu}\;>\;{\mu}_{0}$ using a linear error loss of ${\mid}{\mu}\;-\;{\mu}_{0}{\mid}$ via the empirical Bayes approach. We construct a monotone empirical Bayes test ${\delta}^{*}_{n}$ and study its associated asymptotic optimality. It is shown that the regret of ${\delta}^{*}_{n}$ converges to zero at a rate $\frac{{\ln}^{2}n}{n}$, where n is the number of past data available when the present testing problem is considered.