• Title/Summary/Keyword: PD98059

Search Result 192, Processing Time 0.02 seconds

Effect of S100A8 and S100A9 on expressions of cytokine and skin barrier protein in human keratinocytes

  • MUN JEONG KIM;MI AE IM;JI‑SOOK LEE;JI YOUNG MUN;DA HYE KIM;AYOUNG GU;IN SIK KIM
    • Molecular Medicine Reports
    • /
    • v.20 no.3
    • /
    • pp.2476-2483
    • /
    • 2019
  • Atopic dermatitis (AD ) is an inflammatory skin disorder caused by immunological dysregulation and genetic factors. Whether the expression levels of cytokine and skin barrier protein were altered by S100 calcium binding protein A8 (S100A8) and S100A9 in human keratinocytic HaCaT cells was examined in the present study. Alterations of cytokine expression were examined by ELI SA following treatment with S100A8/9 and various signal protein-specific inhibitors. Activation of the mitogen activated protein kinase (MAPK) pathway and nuclear factor (NF)-κB was evaluated by using western blotting and an NF-κB activity test, respectively. The expression levels of interleukin (IL )-6, IL- 8 and monocyte chemoattractant protein-1 increased following treatment with S100A8 and S100A9, and the increase was significantly blocked by specific signaling pathway inhibitors, including toll-like receptor 4 inhibitor (TLR 4i), rottlerin, PD98059, SB203580 and BAY-11-7085. Extracellular signal-regulated kinase (ER K) and p38 MAPK pathways were activated in a time-dependent manner following treatment with S100A8 and S100A9. Phosphorylation of ER K and p38 MAPK were blocked by TLR 4i and rottlerin. S100A8 and S100A9 induced translocation of NF-κB in a time-dependent manner, and the activation of NF-κB was inhibited by TLR 4i, rottlerin, PD98059 and SB203580. In addition, S100A8 and S100A9 decreased the expression of skin barrier proteins, filaggrin and loricrin. These results may help to elucidate the pathogenic mechanisms of AD and develop clinical strategies for controlling AD.

The Inhibitory Effects of Haeyeol-tang in Expression of Pro-inflammatory Cytokine on LPS-stimulated THP-1 Cells (해열탕(解熱湯)이 LPS로 자극된 대식세포에 있어 염증관련 Cytokine 발현억제에 미치는 효과)

  • Lee, Byeong-Sam;Kim, Hong-yeoul;Kim, Jin-Ju;Jung, Sung-Ki;Rhee, Hyung-Koo;Jung, Hee-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.334-347
    • /
    • 2008
  • Background and Objective : Haeyeol-tang, composed of Houttuyniae Herba, Lonicerae Flos, Taraxaci Herba, and Scrophulariae Radix, is widely used for alleviating the symptom of various kinds of inflammatory pulmonary disease, including asthma and COPD. We want to know whether Haeyeol-tang has an anti-inflammatory effect by analyzing expression of pro-inflammatory cytokines. Materials and Methods : We differentiated the THP-1 cells into macrophage-like cells by treatment with PMA. Inflammation was induced by treatment with LPS and PMA. We found the safe concentration of Haeyeol-tang by using MTS assay and used PD98059 as a negative control for comparison of anti-inflammatory effect of Haeyeol-tang. Results : The RT-PCR analysis results show that the cell survival rate is over 100% within 1 ng/mL to 1 ug/mL of Haeyeol-tang and begins to decrease under 100% at 10 ug/mL. The gene expression of $IL-1{\beta}$, IL-6, IL-8, IL-10, $TNF-{\alpha}$ and $TGF-{\beta}$ levels were down-regulated when Haeyeol-tang was treated at concentrations between 1 ng/mL an 1 ug/mL on monocyte-derived macrophages. Interestingly, 1 ug/mL Haeyeol-tang-treated samples showed that the transcriptional activities of IL-8, $TNF-{\alpha}$, IL-10 and $TGF-{\beta}$ were more down-regulated than those of PD098059 $(TNF-{\alpha}$ inhibitor). At protein level, the ELISA analysis results showed that there were more remarkable (p<0.001) decreases in expression of $IL-1{\beta}$, IL-6, IL-8 and $TNF-{\alpha}$ on both the 1 ug/mL Haeyeol-tang-treated group and the PD98059-treated group than the LPS-treated group. Conclusion : We conclude that Haeyeol-tang has an anti-inflammatory effect by inhibiting expression of pro-inflammatory cytokines and chemokines at mRNA and protein levels. These results may provide us a promising way to care for general inflammatory diseases as well as inflammatory pulmonary disease, including asthma and COPD, with further clinical study.

  • PDF

Isorhamnetin from Oenanthe javanica Attenuates Fibrosis in Rat Hepatic Stellate Cells via Inhibition of ERK Signaling Pathway

  • Lee, Mi-Kyeong;Yang, Hye-Kyung;Ha, Na-Ry;Sung, Sang-Hyun;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.81-85
    • /
    • 2008
  • Isorhamnetin isolated from Oenanthe javanica significantly inhibited proliferation and collagen production in HSC-T6 cells in concentration- and time-dependent manners. Pretreatment of HSC-T6 cells with isorhamnetin significantly inhibited serum-induced ERK phosphorylation, in a similar manner as PD98059, a known MEK inhibitor. These results suggested that isorhamnetin reduced collagen production in HSC-T6 cells, in part, via inhibition of ERK signaling pathway.

Paclitaxel Stimulates Cyclooxygenase-2 Expression via MAP Kinase Pathway in Rabbit Articular Chondrocytes

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Paclitaxel, an antimicrotubule agent, binds to beta-tubulin in the microtubule and stabilizes the polymer, thereby repressing dynamic instability. Here, we have demonstrated that microtubule cytoskeletal architecture involved in regulation of the COX-2 expression in chondrocyte treated with paclitaxel. Paclitaxel enhanced COX-2 expression and prostaglandin E2 production, as indicated by the Western blot analysis, reverse transcriptase PCR(RT-PCR) and immunofluorescence staining, and $PGE_2$ assay, respectively. In our previous data have shown that paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase(Im et al., 2009). SB203580, an inhibitor of p38 kinase, blocked the induction of COX-2 expression by paclitaxel. Also PD98059, an inhibitor of ERK-1/2 kinase was blocked the induced COX-2 expression. These results indicate that activation of ERK-1/2 and p38 kinase is required for COX-2 expression induced by paclitaxel in rabbit articular chondrocytes.

  • PDF

The MEK Inhibitor, PD98059 Blocks the Transactivation, but not the Stabilization or DNA Binding Ability, of Hypoxia-Inducible Factor-1$\alpha$

  • Hur, Eun-Seon;Chang, Keun-Young;Lee, Eun-Jung;Lee, Seung-Ki;Park, Hyun-Sung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.41-83
    • /
    • 2001
  • Under low oxygen tension, cells increase the transcription of specific genes that are involved in angiogenesis, erythropoiesis and glycolysis. Hypoxia-induced gene expression primarily depends on the stabilization of the subunit of Hypoxia-Inducible Factor-1 (HIF-1), which acts as a heterodimeric transactivator.(omitted)

  • PDF

JNK/SAPK Is Required in Nitric Oxide-Induced Apoptosis in Osteoblasts

  • Kang, Young-Jin;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • Nitric oxide(NO) induces apoptosis in human osteoblasts. Treatment with exogenous NO donors, SNAP (S-Nitroso-N-acelylpenicillamine) and SNP (sodium nitroprusside), to MG-63 osteoblasts resulted in apoptotic morphological changes, as shown by a bright blue-fluorescent condensed nuclei and chromatin fragmentation by fluorescence microscope of Hoechst 33258-staining. The activities of caspase-9 and the subsequent caspase-3-like cysteine proteases were increased during NO-induced cell death. Pretreatment with Z-VAD-FMK (a pancaspase inhibitor) or Ac-DEVD-CHO (a specific caspase-3 inhibitor) abrogated the NO-induced cell death. The NO donor markedly activated JNK, a stress-activated protein kinase in the human osteoblasts. This study showed that the inhibition of the JNK pathway markedly reduced NO-induced cell death. But neither PD98059 (MEK inhibitor) nor SB203580 (p38 MAPK inhibitor) had any effect on NO-induced death. Taken together, these results suggest that JNK/SAPK may be related to NO-induced apoptosis in MG-63 human osteoblasts.

MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells (MAPK 경로를 통한 HO-1과 분화 표지자 발현)

  • Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

Paclitaxel Suppress Dedifferentiation via Mitogen-activated Protein Kinase Pathway in Rabbit Articular Chondrocyte

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • Microtubule-interfering agents (MIAs), including paclitaxel, have been attributed in part to interference with microtubule assembly, impairment of mitosis, and changes in cytoskeleton. But the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. This study investigated the effect of paclitaxel on differentiation such as type II collagen expression and sulfated proteoglycan accumulation in rabbit articular chondrocytes. Paclitaxel caused differentiated chondrocyte phenotype as demonstrated by increment of type II collagen expression and proteoglycan synthesis Paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced paclitaxel-induced differentiation, whereas inhibition of p38 kinase with SB203580 suppressed paclitaxel-induced differentiation. Our findings suggest that ERK-1/2 and p38 kinase oppositely regulate paclitaxel-induced differentiation in chondrocytes.

  • PDF

Enhanced proliferation of SNU-407 human colon cancer cells by muscarinic acetylcholine receptors

  • Park, Yang-Seo;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.803-807
    • /
    • 2008
  • We investigated the expression of muscarinic acetylcholine receptors (mAChRs) and their possible involvement in the regulation of cell proliferation in four colon cancer cell lines (SNU-61, SNU-81, SNU-407, and SNU-1033) derived from Korean colon carcinoma patients. A ligand binding assay showed that all four cell lines expressed mAChRs. Treatment of the four cell lines with the cholinergic agonist carbachol led to the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In SNU-407 cells, carbachol significantly stimulated cell proliferation, which could be abolished by the muscarinic antagonist atropine and the ERK1/2 kinase inhibitor PD98059. These results indicate that mAChRs specifically mediate the proliferation of SNU-407 colon cancer cells via the ERK1/2 pathway.

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells (복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가)

  • Yoon, Hyun-Joong;Park, Soo-Young;Oh, Sung-Tack;Lee, Kee-Young;Yang, Sung-Yeul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 2011
  • This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.