JNK/SAPK Is Required in Nitric Oxide-Induced Apoptosis in Osteoblasts

  • Kang, Young-Jin (Department of Pharmacology, College of Medicine, Gyeongsang National University, Institute of Health Science) ;
  • Chae, Soo-Wan (Department of Pharmacology and Institute of Cardiovascular Research, Chonbuk National University Medical School)
  • Published : 2003.11.01

Abstract

Nitric oxide(NO) induces apoptosis in human osteoblasts. Treatment with exogenous NO donors, SNAP (S-Nitroso-N-acelylpenicillamine) and SNP (sodium nitroprusside), to MG-63 osteoblasts resulted in apoptotic morphological changes, as shown by a bright blue-fluorescent condensed nuclei and chromatin fragmentation by fluorescence microscope of Hoechst 33258-staining. The activities of caspase-9 and the subsequent caspase-3-like cysteine proteases were increased during NO-induced cell death. Pretreatment with Z-VAD-FMK (a pancaspase inhibitor) or Ac-DEVD-CHO (a specific caspase-3 inhibitor) abrogated the NO-induced cell death. The NO donor markedly activated JNK, a stress-activated protein kinase in the human osteoblasts. This study showed that the inhibition of the JNK pathway markedly reduced NO-induced cell death. But neither PD98059 (MEK inhibitor) nor SB203580 (p38 MAPK inhibitor) had any effect on NO-induced death. Taken together, these results suggest that JNK/SAPK may be related to NO-induced apoptosis in MG-63 human osteoblasts.

Keywords

References

  1. Arends, M. J. and Wyllie, A. H., Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol., 32, 223-254 (1991)
  2. Bergmann, L., Kroncke, K. D., Suschek, C., Kolb, H., and Kolb-Bachofern, V., Cytotoxic action of IL-1 beta against pancreatic islets is mediated via nitric oxide formation and is inhibited by NG-monomethyl-L-arginine. FEBS Lett., 299, 103-106 (1992) https://doi.org/10.1016/0014-5793(92)80110-3
  3. Bertolini, D. R., Nedwin, G. E., Bringman, D., Smith, D., and Mundy, G. R., Stimulation of bone formation in vitro by human tumor necrosis factors. Nature, 319, 516-519 (1986) https://doi.org/10.1038/319516a0
  4. Chae, H. J., Chae, S. W., Kang, J. S., Yun, D. H., Bang, B. G., Kang, M. R., Kim, H. M., and Kim, H. R., Transition metal induces apoptosis in MC3T3E1 osteoblast: Evidence of free radical release. Kor. J. Physiol. Pharmacol., 4, 47-54 (2000)
  5. Deveraux, Q. L. and Reed, J. C., IAP family proteins: Suppressors of apoptosis. Genes. Dev., 13, 239-252 (1999) https://doi.org/10.1101/gad.13.3.239
  6. Du, C., Fang, M., Li, Y., Li, L., and Wang, X., SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33-42 (2000) https://doi.org/10.1016/S0092-8674(00)00008-8
  7. Forstermann, U., Schmidt, H. H., Pollock, J. S., Sheng, H., Mitchell, J. A., Warner, T. D., Nakane, M., and Murad, F., Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol., 42, 1849-1857 (1991) https://doi.org/10.1016/0006-2952(91)90581-O
  8. Karanewsky, D. S., Bai, X., Linton, S. D., Krebs, J. F., Wu, J., Pham, B., and Komaselli, K. J., Conformationally constrained inhibitors of caspase-1 (interleukin-1 beta converting enzyme) and of the human CED-3 homologue caspase-3 (CPP32, apopain). Bioorg. Med. Chem. Letters, 8, 2757-2762 (1998) https://doi.org/10.1016/S0960-894X(98)00498-3
  9. Kibourn, R. G., Jubran, A., Gross, S. S., Griffith, O. W., Levi, R., Adams, J., and Lodato, R. F., Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem. Biophys. Res. Commun., 172, 1132-1138 (1990) https://doi.org/10.1016/0006-291X(90)91565-A
  10. Liew, F. Y., Li, Y., Severn, A., Millott, S., Schmidt, J., Salter, M., and Moncada, S., A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur. J. Immunol., 21, 2489-2494 (1991) https://doi.org/10.1002/eji.1830211027
  11. Liu, J. D., Lin, S. Y., Ho, Y. S., Pan, S., Hung, L. F., Tsai, S. H., Lin, J. K., and Liang, Y. C., Involvement of c-jun N-terminal kinase activation in 15-deoxy-delta 12, 14-prostaglandin J2-and prostaglandin A1-induced apoptosis in AGS qastric epithelial cells. Mol. Carcinoq., 37, 16-24 (2003) https://doi.org/10.1002/mc.10119
  12. Moncada, S. and Higgs, A.. The L-arginine nitric oxide pathway. N. Engl. J. Med., 329, 2002-2012 (1999)
  13. Moncada, S., Palmer, R. M., and Higgs, E. A., Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol., 38, 1709-1715 (1989) https://doi.org/10.1016/0006-2952(89)90403-6
  14. Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J., 6, 3051-3064, (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  15. Nunokawa, Y. and Tanaka, S., Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun., 188, 409-415 (1992) https://doi.org/10.1016/0006-291X(92)92400-R
  16. Paik, Y. H., Schwabe, R. F., Bataller, R., Russo, M. P., Jobin, C., and Brenner, D. A., Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 37, 104-355 (2003)
  17. Reed, J. C., Mechanisms of apoptosis (Warner/Lambert Award). Amer. J. Pathol., 157, 1415-1430 (2000) https://doi.org/10.1016/S0002-9440(10)64779-7
  18. Reed, J. and Paternostro, G., Post-mitochondrial regulation of apoptosis during heart failure. Proc. Natl. Acad. Sci. USA, 96, 7614-7616 (1999) https://doi.org/10.1073/pnas.96.14.7614
  19. Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T., and Nicholson, D. W., A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem., 272, 17907-17911 (1997) https://doi.org/10.1074/jbc.272.29.17907
  20. Wyllie, A. H., Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284, 555-556 (1980) https://doi.org/10.1038/284555a0