• Title/Summary/Keyword: PCS testing

Search Result 30, Processing Time 0.036 seconds

Development of the OSGi-based USB Terminal System for U-learning (U-learning을 위한 OSGi에 기반한 USB 단말기 시스템 개발)

  • Kim, Hee-Sun;Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1252-1256
    • /
    • 2007
  • U-learning (ubiquitous learning) systems, which deliver learning materials anytime and anywhere, allow learners to watch live lectures on PDAs, tablet PCs and notebook computers via broadband and wireless Internet. These systems have various problems; first, terminal devices are expensive, and it is difficult to maintain their efficiencies. Secondly, Internet does not guarantee quality of service (QoS), and in general it does not provide real-time services. Finally, the security of these systems is weaker in a local network than in an external network. The USB-based terminal system based on the OSGi service platform was designed as a ubiquitous system, in order to solve those problems. The USB terminals, used in this system, are inexpensive, and it is easy to maintain their performances. Also, this system solves the problems of security in a local network and provides guaranteed QoS. To accomplish this, the number of USB terminals connected to the system has to be limited according to the formula proposed in our paper. This system uses the OSGi specification as a middleware. It supports the discovery mechanism of the USB terminals, maintenance and administration of the system. Finally, this paper shows a driver's license testing system as an example u-learning application1.

Characteristic Analysis and Implementation of 30kW Portable Test Equipment for Performance Evaluation in Energy Storage System (30kW급 ESS용 이동형 성능평가 시험장치의 구현 및 특성분석)

  • Park, Jea-Bum;Kim, Mi-Sung;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.715-723
    • /
    • 2018
  • The energy storage system consists of batteries, power conditioning system and energy management system. If ESS is installed and operated in the field, SAT(Site Acceptance Test) of ESS is being essentially required for the safety and performance of ESS. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool. Therefore, this paper proposes the modeling of portable test equipment in order to evaluate the performance and reliability of ESS by using the PSCAD/EMTDC S/W. And also, the prototype of 30[kW] scaled portable test equipments is implemented based on the S/W modeling. From the results of various simulations and testings such as power quality, LVRT and anti-islanding tests, it is confirmed that 30[kW] scaled portable test equipment is useful for SAT of ESS, because the simulation results of PSCAD/EMTDC are identical to them of 30[kW] test equipment at the same test conditions.

Development of Environmental Safety Real-Time Monitoring System by Living Area (생활권역별 환경안전 실시간 모니터링 시스템의 개발)

  • Lee, Joo-Hyun;Kim, Joo-Ho;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1088-1091
    • /
    • 2019
  • In this paper, a real-time monitoring system for environmental safety by living area is proposed. The proposed system is designed to measure radiation, fine dust and basic living information (temperature) using fixed and mobile measuring equipment, and constitutes a web database that stores data received from the equipment. It also develops web programs for displaying received data on PCs and mobile phones. The results of testing the performance of the system by an authorized testing agency showed that the radiation measurement range was measured in the range of $10{\mu}Sv/h$ to 10mSv/h, which is comparable to the world's highest level, and that the accuracy was measured between ${\pm}6.7$ and ${\pm}8.7$ percent of the measurement uncertainty was measured and normal operation at or below the international standard of ${\pm}15$ percent. In addition, the temperature test was conducted on a section of $-20^{\circ}C$ to $50^{\circ}C$ and normal operation was confirmed in response to the temperature change. Stability of radiated electromagnetic waves was ensured by a suitable judgment. The product's testing in general and high and low temperature environments for about four months after the prototype was made confirmed to be more than five years of durability. The measurement range and accuracy of fine dust sensors are compared with those of companies that measure the air environment, and the performance level is similar through the air quality measurement register.

VERIFICATION OF ELECTROMAGNETIC EFFECTS FROM WIRELESS DEVICES IN OPERATING NUCLEAR POWER PLANTS

  • YE, SONG-HAE;KIM, YOUNG-SIK;LYOU, HO-SUN;KIM, MIN-SUK;LYOU, JOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.729-737
    • /
    • 2015
  • Wireless communication technologies, especially smartphones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs) because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smartphones (Wi-Fi standard), Internet Protocol (IP) phones, personal digital assistant (PDA) for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI) from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Evaluation of Psychosocial Impact and Quality of Life in BRCA Mutation Family (BRCA 돌연변이 가계의 심리상태 및 삶의 질 평가)

  • Han, Sang-Ah;Kim, Sai-Rhee;Kang, Eun-Young;Kim, Jeong-Hyun;Ha, Tae-Hyeon;Yang, Eun-Joo;Lim, Jae-Young;Han, Won-Shik;Noh, Dong-Young;Kim, Sung-Won
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • Purpose: The aims of this study are to evaluate psychological impact and quality of life according to the cancer diagnosis and mutation status in Korean families with BRCA mutations. Materials and Methods: Seventeen affected carriers (AC), 16 unaffected carriers (UC) and 13 healthy non carriers (NC) from 13 BRCA mutation families were included in the study. Outcomes were compared with regard to depression (Beck Depression Inventory), anxiety (State-Trait Anxiety Inventory, STAI), optimism (Reevaluation of the Life Orientation test, LOT-R), knowledge of hereditary ovarian cancer, and quality of life (QoL) (SF-36v2 Health Survey, physical component score [PCS], mental component score [MCS]) among three groups. Result: Level of depression, optimism, and PCS were similar in AC, UC, and NC. Anxiety score was elevated in all three groups. MCS was significantly low in AC than in UC and NC (P=0.009, P=0.017). Knowledge of hereditary breast and ovarian cancer was high in AC than NC (P=0.001). MCS was significantly related to whether patient was affected by cancer (P=0.043) and has occupation (P=0.008) or not in multivariable analysis. Conclusion: From this cross sectional study, psychological adverse effect was not related to the carrier status of BRCA mutation. Elevated anxiety in BRCA family members was observed but, independent to affection and the type of genetic mutation. AC showed low mental QoL. Further effort to understand psychological impact and QoL of genetic testing in BRCA family members is required for follow-up in clinical aspects.

(Development of Ring Core Auto-Classifier by Multi-Motor Control) (여러 개의 모터에 의하여 제어되는 링-코어 자동 선별기 개발)

  • Park, In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.104-115
    • /
    • 2002
  • Core is the main component of inductor. This core should be classified into around 10 classes according to the value of inductance and Q. The coil should be winded with the outer-boundary of this core by different number of turns. Theses kind of precise inductors would be required in the future environment which PCs and communication devices demand more high speed and lower voltage level. It would be quite unefficient that only one core is classified once a time. There, it will be developed so that 10 cores are classified simultaneously. For the operation of classifying 10 cores once in a time, suppose 10 test instruments could be used. In this case, it would take much cost since a test instrument Is expensive. So, by using only one test instrument, it is really more desirable that this system is developed. Each core classified by 10 different classes is to be stored into the corresponding box through the corresponding rubber hose. 10 cores are passed on a serial line and are placed on each testing slot. Here, each core located at each slot is tested, and then the bowl located on the top of a step motor is moved into the corresponding spot by rotating step motor with some angles. Each bowl connected with the corresponding box through rubber hose. Actually 100 hoses are connected, 10 step motors are rotated at 10 different angles, so the size is really so big, the shape of connecting 100 hoses is so complicated. Therefore it is anticipated that the system would be going to be easily out of ordered. In this paper the main purpose is to make several suggestions to be able to work well in these kinds of being affected by the abnormal operation of motors and the flow of cores.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

Implementation and Validation of the Web DDoS Shelter System(WDSS) (웹 DDoS 대피소 시스템(WDSS) 구현 및 성능검증)

  • Park, Jae-Hyung;Kim, Kang-Hyoun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.4
    • /
    • pp.135-140
    • /
    • 2015
  • The WDSS improves defensive capacity against web application layer DDoS attack by using web cache server and L7 switch which are added on the DDoS shelter system. When web DDoS attack occurs, security agents divert traffic from backbone network to sub-network of the WDSS and then DDoS protection device and L7 switch block abnormal packets. In the meantime, web cache server responds only to requests of normal clients and maintains stable web service. In this way, the WDSS can counteract the web DDoS attack which generates small traffic and depletes server-client session resource. Furthermore, the WDSS does not require IP tunneling because it is not necessary to retransfer the normal requests to original web server. In this paper, we validate operation of the WDSS and verify defensive capability against web application layer DDoS attacks. In order to do this, we built the WDSS on backbone network of an ISP. And we performed web DDoS tests by using a testing system that consists of zombie PCs. The tests were performed by three types and various amounts of web DDoS attacks. Test results suggest that the WDSS can detect small traffic of the web DDoS attacks which do not have repeat flow whereas the formal DDoS shelter system cannot.

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.