• Title/Summary/Keyword: PCR.

Search Result 11,785, Processing Time 0.05 seconds

Association of polymorphisms in bone morphogenetic protein receptor-1B gene exon-9 with litter size in Dorset, Mongolian, and Small Tail Han ewes

  • Jia, Jianlei;Chen, Qian;Gui, Linsheng;Jin, Jipeng;Li, Yongyuan;Ru, Qiaohong;Hou, Shengzhen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.949-955
    • /
    • 2019
  • Objective: The present study was to investigate the association of polymorphisms in exon-9 of the bone morphogenetic protein receptor-1B (BMPR-1B) gene (C864T) with litter size in 240 Dorset, 232 Mongolian, and 124 Small Tail Han ewes. Methods: Blood samples were collected from 596 ewes and genomic DNA was extracted using the phenol: chloroform extraction method. The 304-bp amplified polymerase chain reaction product was analyzed for polymorphism by single-strand conformation polymorphism method. The genotypic frequency and allele frequency of BMPR-1B gene exon-9 were computed after sequence alignment. The ${\chi}^2$ independence test was used to analyze the association of genotypic frequency and litter size traits with in each ewe breed, where the phenotype was directly treated as category. Results: The results indicated two different banding patterns AA and AB for this fragment, with the most frequent genotype and allele of AA and A. Calculated Chi-square test for BMPR-1B gene exon-9 was found to be more than that of p value at the 5% level of significance, indicating that the population under study was in Hardy-Weinberg equilibrium for all ewes. The ${\chi}^2$ independence test analyses indicated litter size differences between genotypes was not the same for each breed. The 304-bp nucleotide sequence was subjected to BLAST analysis, and the C864T mutation significantly affected litter size in singletons, twins and multiples. The heterozygosity in exon-9 of BMPR-1B gene could increase litter size for all the studied ewes. Conclusion: Consequently, it appears that the polymorphism BMPR-1B gene exon-9 detected in this study may have potential use in marker assisted selection for litter size in Dorset, Mongolian, and Small Tail Han ewes.

Tetanus occurred by misuse of syringe in Korean native cattle (한우에서의 주사기 오사용으로 발생한 파상풍 증례)

  • Lee, KyungHyun;Kim, HaYoung;Jung, ByeongYeal;Kim, JongWan;Lee, KiChan;So, ByungJae;Oem, JaeGu;Song, JaeChan;Choi, Eun-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.39-42
    • /
    • 2019
  • Tetanus is an acute, often fatal, and infectious disease of all species of domestic animals caused by the neurotoxin of Clostridium tetani (C. tetani). This disease is usually known to develop after microbial contamination in the deep or penetrating wound sites. In February 2017, a farmer who was raising 76 cows injected foot and mouth disease vaccine to three or more cows with one syringe. Their clinical symptoms were observed 2 to 16 days after the vaccination. The initial symptoms were stiffness, rigidity of the neck and limbs, pricked ears, and prolapse of the third eyelid. Subsequently, there was recumbency with extension of the limbs, convulsions and opistotonus and the affected 20 cows were all died. Two dead cows were submitted to Animal and Plant Quarantine Agency for disease diagnosis. At necropsy, a focal edematous abscess of 15 to 20 cm in diameter was grossly observed in the subcutaneous and intramuscular tissue of scapular region and filled with a large amount of greenish pus. The feed was full in oral cavity and slightly observed in the trachea and lobes of lung. Histopathologically, focal granulomatous nodules with eosinophilic materials in the tissue were observed. In the lung, aspiration pneumonia and gram (+) bacteria were seen. The C. tetani was isolated in samples anaerobically cultured using reinforced clostridial medium and identified by PCR. To our knowledge, no previous outbreak of tetanus in cattle has affected such a high number of animals; neither has it been associated with misuse of the same syringe and needle to administer multiple individuals.

Anti-inflammatory Effects of Salvia Miltiorrhizae Radix Water Extract in RAW 264.7 Cells and Mouse Induced by Lipopolysaccharide (단삼 물 추출물의 LPS로 유도된 RAW 264.7 세포와 생쥐 염증모델에서의 항염증 효과)

  • Kim, Gun-Hee;Hong, Ka-Kyung;Cho, Han-Baek;Choi, Chang-Min;Kim, Song-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • Objectives: This study was performed to identify the anti-inflammatory effects of Salvia miltiorrhizae radix Water extract (SMW) on lipopolysaccharide (LPS) induced inflammation. Methods: RAW 264.7 cells were treated with 500 ng/ml of LPS. SMW (0.1, 0.25, 0.5 mg/ml) was treated 1 h prior to LPS. Cell viability was measured by MTT assay. Levels of nitric oxide (NO) were measured with Griess reagent and pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B ($NF-{\kappa}B$) activation by western blot. In addition, we observed mice survival rate after LPS and examined their cytokine levels of serum and liver tissue. Results: SMW itself did not have cytotoxic effects in RAW 264.7 cells less than 0.5 mg/ml. SMW treatment inhibited the production of NO, and interleukin $(IL)-1{\beta}$ which is pro-inflammatory cytokine. And SMW treatment inhibited the LPS-induced activation of MAPKs such as extracellular signal-regulated kinase1/2 (ERK1/2), p38 kinases (p38), c-Jun NH2-terminal kinase (JNK) and $NF-{\kappa}B$. In addition, it also showed reducing the level of $IL-1{\beta}$ on the serum and liver tissue of mice. Also, death of LPS-induced mice was inhibited by SMW. Conclusions: The result suggests that treatment of SMW could reduce the LPS-induced inflammation. Thereby, SMW could be used as a protective agent against inflammation. Also, this study could give a clinical basis that SMW could be a drug or agent to prevent inflammatory diseases.

Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study (계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성)

  • Lee, Yookyung;Kim, Jongsoo;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • The purpose of this study was to investigate the odontoblast gene expression related to the subculture speed of supernumerary dental pulp stem cells (sDPSCs). The stem cell is undifferentiated cells which has the ability to differentiate into various cells. Specific stimulation or environment induces cell differentiation, and these differentiation leads to bone or muscle formation. 20 sDPSCs were obtained from 20 children under aseptic condition. During the culture through the 10th passage, the third passage cells which showed short subculture period and 10th passage cells which showed long subculture period were earned. Each cell was divided into differentiated group and non-differentiated group. Quantitative real-time polychain reaction (q-RT-PCR) was performed for each group. The genes related to odontoblast differentiation, Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osteonectin (ONT), Dentin sialophosphoprotein (DSPP) and Dentin matrix acidic phosphoprotein 1 (DMP-1), were measured. Differentiated cells showed more gene expression levels. Undifferentiated cells showed higher gene expression level in 10th passages but differentiated cells showed higher gene expression level in 3rd passages. Cells that showed faster subculture period showed relatively lower gene expression level except for OCN and DSPP.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Integrative analysis of cellular responses of Pseudomonas sp. HK-6 to explosive RDX using its xenA knockout mutant (Pseudomonas sp. HK-6의 xenA 돌연변이체를 이용하여 RDX 폭약에 노출된 세포반응들의 통합적 분석)

  • Lee, Bheong-Uk;Choi, Moon-Seop;Seok, Ji-Won;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.343-353
    • /
    • 2018
  • Our previous research demonstrated the essential role of the xenB gene in stress response to RDX by using Pseudomonas sp. HK-6 xenB knockout. We have extended this work to examine the cellular responses and altered proteomic profiles of the HK-6 xenA knockout mutant under RDX stress. The xenA mutant degraded RDX about 2-fold more slowly and its growth and survival rates were several-fold lower than the wild-type HK-6 strain. SEM revealed more severe morphological damages on the surface of the xenA mutant cells under RDX stress. The wild-type cells expressed proportionally-increased two stress shock proteins, DnaK and GroEL from the initial incubation time point or the relatively low RDX concentrations, but slightly less expressed at prolonged incubation period or higher RDX. However the xenA mutant did not produced DnaK and GroEL as RDX concentrations were gradually increased. The wild-type cells well maintained transcription levels of dnaA and groEL under increased RDX stress while those in the xenA mutant were decreased and eventually disappeared. The altered proteome profiles of xenA mutant cells under RDX stress also observed so that the 27 down-regulated plus the 3 up-regulated expression proteins were detected in 2-DE PAGE. These all results indicated that the intact xenA gene is necessary for maintaining cell integrity under the xenobiotic stress as well as performing an efficient RDX degradation process.

Assessment of the level and identification of airborne molds by the type of water damage in housing in Korea (국내 주택에서 물 피해 유형에 따른 부유곰팡이 농도 수준 평가 및 동정 분석)

  • Lee, Ju Yeong;Hwang, Eun Seol;Lee, Jeong-Sub;Kwon, Myunghee;Chung, Hyen Mi;Seo, SungChul
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • Mold grows more easily when humidity is higher in indoor spaces, and as such is found more often on wetted areas in housing such as walls, toilets, kitchens, and poorly managed spaces. However, there have been few studies that have specifically assessed the level of mold in the indoor spaces of water-damaged housing in the Republic of Korea. We investigated the levels of airborne mold according to the characteristics of water damage types and explored the correlation between the distribution of mold genera and the characteristics of households. Samplings were performed from January 2016 to June 2018 in 97 housing units with water leakage or condensation, or a history of flooding, and in 61 general housing units in the metropolitan and Busan area, respectively. Airborne mold was collected on MEA (Malt extract agar) at flow rate of 100 L/min for 1 min. After collection, the samples were incubated at $25^{\circ}C$ for 120 hours. The cultured samples were counted and corrected using a positive hole conversion table. The samples were then analyzed by single colony culture, DNA extraction, gene amplification, and sequencing. By type of housing, concentrations of airborne mold were highest in flooded housing, followed by water-leaked or highly condensed housings, and then general housing. In more than 50% of water-damaged housing, the level of airborne mold exceeded the guideline of Korea's Ministry of Environment ($500CFU/m^3$). Of particular concern was the fact that the I/O ratio of water-damaged housing was greater than 1, which could indicate that mold damage may occur indoors. The distribution patterns of the fungal species were as follows: Penicillium spp., Cladosporium spp. (14%), Aspergillus spp. (13%) and Alternaria spp. (3%), but significant differences of their levels in indoor spaces were not found. Our findings indicate that high levels of mold damage were found in housing with water damage, and Aspergillus flavus and Penicillium brevicompactum were more dominant in housing with high water activity. Comprehensive management of flooded or water-damaged housing is necessary to reduce fungal exposure.

Characterization of Phenotypic Traits and Application of Fruit Flesh Color Marker in Melon (Cucumis melo L.) Accessions (멜론 유전자원의 생육 평가와 과육색 유전형 분석)

  • Bae, Ik Hyun;Kang, Han Sol;Jeong, Woo Jin;Ryu, Jae Hwang;Lee, Oh Hum;Chung, Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.478-490
    • /
    • 2021
  • We aimed to generate basic breeding data for melon (Cucumis melo L.). A total of 219 melon accessions conserved at the National Agrobiodiversity Center (NAC) in Rural Development Administration (RDA) were used in this study, of which 72 (33%) were collected from India. The majority of accessions showed orange (42%) and white (36%) flesh color. In addition to phenotypic evaluations, the accessions were genotyped using a molecular marker for the carotenoid biosynthesis gene CmOr. DNA fragments of the expected size were amplified in 205 out of 219 accessions. Digestion of the PCR products with HinfI restriction endonuclease showed 100% concordance between phenotype and genotype in green-fleshed accessions, but 98%, 97%, and 80% concordance in orange-, white-, and creamy-fleshed accessions, respectively. Sequence analysis revealed single nucleotide changes in the three positions of SNP1, SNP2 and SNP1int in the CmOr gene among accessions. These newly found alleles suggest that there are multiple mechanisms in determining fruit flesh color in melon. Also, the phenotype data of diverse accessions obtained in this study will be a valuable source for melon breeding.

Anti-obesity Effect of the Flavonoid Rich Fraction from Mulberry Leaf Extract (뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과)

  • Go, Eun Ji;Ryu, Byung Ryeol;Yang, Su Jin;Baek, Jong Suep;Ryu, Su Ji;Kim, Hyun Bok;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.395-411
    • /
    • 2020
  • Background: This study investigated the anti-obesity effect of the flavonoid rich fraction (FRF) and its constituent, rutin obtained from the leaf of Morus alba L., on the lipid accumulation mechanism in 3T3-L1 adipocyte and C57BL/6 mouse models. Methods and Results: In Oil Red O staining, FRF (1,000 ㎍/㎖) treatments showed inhibition rate of 35.39% in lipid accumulation compared to that in the control. AdipoRedTM assay indicated that the triglyceride content in 3T3-L1 adipocytes treated with FRF (1,000 ㎍/㎖) was reduced to 23.22%, and free glycerol content was increased to 106.04% that of the control. FRF and its major constituent, rutin affected mRNA gene expression. Rutin contributed to the inhibition of Sterol regulatory element binding protein-1c (SREBP-1c) gene expression, and inhibited the transcription factors SREBP-1c, peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). In addition, the effect of FRF administration on obesity development in C57BL/6 mice fed high-fat diet (HFD) was investigated. FRF suppressed weight gain, and reduced liver triglyceride and leptin secretion. FRF exerted potential anti-inflammatory effects by improving insulin resistance and adiponectin levels, and could thus be used to help counteract obesity. The mRNA expressions of PPAR-γ, FAS, ACC, and CPT-1 were determined in liver tissue. Quantitative real-time PCR analysis was also performed to evaluate the expression of IL-1β, IL-6, and TNF-α in epididymal adipose tissue. Compared to the control group, mice fed the HFD showed the up-regulation in PPAR-γ, FAS, IL-6, and TNF-α genes, and down-regulation in CPT1 gene expression. FRF treatement markedly reduced the expression of PPAR-γ, FAS, IL-6, and TNF-α compared to those in HFD control, whereas increased the expression level of CPT1. Conclusions: These results suggest that the FRF and its major active constituent, rutin, can be used as effective anti-obesity agents.

The Effect of Inhibition of Uncaria rhynchophylla as an Inhibitor of Melanogenesis and an Antioxidant in B16F10 Melanoma Cells (B16F10세포에서 멜라닌 생성 억제제 및 항산화제로서 조구등의 억제 효과)

  • Dong, Yuanyuan;Woo, Young Min;Cha, Ji Hyun;Cha, Jae Young;Lee, Nai Wei;Back, Min Woo;Park, Joon-sung;Lee, Sang-Hyeon;Ha, Jong-Myung;Kim, Andre
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1033-1041
    • /
    • 2020
  • Many people of all ages wish to have lighter skin for cosmetic reasons, and natural products attract more attention than chemically synthesized compounds. Uncaria rhynchophylla is widely used in Asia as a traditional herbal medicine. In order to find novel skin whitening agents, the present study evaluated the antioxidant activity and potential tyrosinase-inhibiting properties of U. rhynchophylla. Specifically, this study analyzed the antioxidant capacity of a 70% ethanolic extract of U. rhynchophylla as well as its effects on tyrosinase activity and melanin synthesis. Total mRNA levels were examined using reverse transcription polymerase chain reaction. The results revealed that U. rhynchophylla extracts exhibit great antioxidant capacity and significant levels of polyphenol and flavonoid compounds. U. rhynchophylla extracts can also powerfully inhibit tyrosinase activity. This same capacity was observed in melanoma B16F10 cells; that is, U. rhynchophylla extracts suppressed intracellular tyrosinase activity and reduced the amount of melanin in treated cells. In addition, a 1 mg/ml concentration of U. rhynchophylla extract significantly reduced the mRNA expression levels of tyrosinase. U. rhynchophylla extracts decrease tyrosinase and inhibit melanogenesis in B16F10 cells. This finding suggests that U. rhynchophylla has great potential as a natural whitening agent in skincare products.