• Title/Summary/Keyword: PCR-targeting

Search Result 266, Processing Time 0.024 seconds

Resveratrol pretreatment alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis by targeting TLR4/MyD88/NF-κB signaling cascade in coronary microembolization-induced myocardial damage

  • Chang-Jun Luo;Tao Li;Hao-Liang Li;You Zhou;Lang Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.143-155
    • /
    • 2023
  • Percutaneous coronary intervention and acute coronary syndrome are both closely tied to the frequently occurring complication of coronary microembolization (CME). Resveratrol (RES) has been shown to have a substantial cardioprotective influence in a variety of cardiac diseases, though its function and potential mechanistic involvement in CME are still unclear. The forty Sprague-Dawley rats were divided into four groups randomly: CME, CME + RES (25 mg/kg), CME + RES (50 mg/kg), and sham (10 rats per group). The CME model was developed. Echocardiography, levels of myocardial injury markers in the serum, and histopathology of the myocardium were used to assess the function of the cardiac muscle. For the detection of the signaling of TLR4/MyD88/NF-κB along with the expression of pyroptosis-related molecules, ELISA, qRT-PCR, immunofluorescence, and Western blotting were used, among other techniques. The findings revealed that myocardial injury and pyroptosis occurred in the myocardium following CME, with a decreased function of cardiac, increased levels of serum myocardial injury markers, increased area of microinfarct, as well as a rise in the expression levels of pyroptosis-related molecules. In addition to this, pretreatment with resveratrol reduced the severity of myocardial injury after CME by improving cardiac dysfunction, decreasing serum myocardial injury markers, decreasing microinfarct area, and decreasing cardiomyocyte pyroptosis, primarily by blocking the signaling of TLR4/MyD88/NF-κB and also reducing the NLRP3 inflammasome activation. Resveratrol may be able to alleviate CME-induced myocardial pyroptosis and cardiac dysfunction by impeding the activation of NLRP3 inflammasome and the signaling pathway of TLR4/MyD88/NF-κB.

A Study on Microbial Contamination according to Effective Management Strategies of Indoor Climbing Gym Holds (실내 클라이밍 짐 홀드의 관리방법에 따른 미생물 오염에 관한 연구)

  • Ji-In Kim;Hyejin Shin;Yujeong Jeong;Haesong Sher;Gitaek Oh;Yonghoo Park;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.102-112
    • /
    • 2024
  • Background: Despite the rise in the number of domestic indoor climbing gyms, there is a lack of specific hygiene standards and research on the holds installed in them. Holds can act as vectors for microbial transmission through the hands, posing a risk of infectious diseases, especially with damaged skin. Objectives: The aim of this study is to investigate the contamination level and species of microorganisms on holds according to the management methods practiced in indoor climbing gyms and identify effective strategies for reducing microbial contamination. Methods: We investigated factors that may influence microbial contamination of holds, including hold management methods, user information, and hygiene management at three climbing gyms in Seoul. A total of 72 holds were sampled, 18 for each management method of brushing, high-pressure washing, and ethanol disinfection. Samples were cultured on LB and blood agar at 37℃ for 48 hours to calculate CFUs. PCR assay targeting 16S rRNA was carried out to identify microorganisms. Dunn-Bonferroni was employed to see the microbial reduction effect of the management method and the difference in microbial contamination by management method and climbing gym. Results: As a result of microbial identification, microorganisms such as Bacillus, Staphylococcus, and Micrococcus, which were derived from various environments such as skin and soil, were discovered on the surface of the climbing hold. Among the discovered microorganisms, some species had potential pathogenic properties that could cause food poisoning, gastrointestinal disease, bacteremia, and sepsis. All hold management methods were effective in reducing microorganisms (p<0.05), with ethanol disinfection being the most effective (p<0.001). Conclusions: Our results indicate that there are potential pathogens on holds that demand thorough management for microbial prevention. Proposed methods include regular brushing and ethanol disinfection in addition to high-pressure washing with long cycles, which are the existing forms of hold management. Further studies on shoe management are advised to curb soil-derived microorganisms.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

Alteration of MicroRNAs Targeted Integrins by PD-MSCs Transplantation Is Involved in Hepatic Regeneration in a Rat Model with BDL (담관결찰 쥐 모델에서 태반유래중간엽줄기세포 이식에 의한 miRNA 표적 인테그린 변화의 간재생 효과)

  • Park, Sohae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.710-718
    • /
    • 2021
  • Placenta-derived mesenchymal stem cells (PD-MSCs) are promising candidates for cell-based therapy in regenerative medicine. The migration and homing potential of PD-MSCs to injured sites is a critical property of MSC engraftment. MicroRNAs (miRNAs) have recently been shown to regulate the critical functions of MSCs, such as proliferation, survival, and migration. The objective of the present study was to identify the miRNA and target genes involved in PD-MSCs homing in a bile duct ligation (BDL) rat model. We selected candidate miRNAs targeting genes for PD-MSCs homing based on microarray analysis. PD-MSC engraftment in BDL-injured rat liver was identified by immunofluorescence assay and human-specific Alu gene expression by quantitative real-time polymerase chain reaction (qRT-PCR) one week after transplantation. Compared with migrated naïve PD-MSCs under hypoxic and normoxic conditions (Hyp/Nor), the transplanted group with PD-MSCs (Tx) showed distinct differences in miRNA expressions in BDL-injured rat liver. We also validated the miRNAs and their target genes for PD-MSCs homing. The expressions of integrin α4 (ITGA4) and integrin α5 (ITGA5) target genes for miR-199a-5p and miR-148a-3p were significantly upregulated in the Tx group (p<0.05). In addition, integrin β1 (ITGB1) and integrin β8 (ITGB8) were upregulated by suppressing miR-183-5p and miR-145-5p, respectively. These results demonstrated that PD-MSCs regulate miRNA expression related to the integrin family for their homing effects on the BDL-injured rat liver. The findings further suggest that miRNA-mediated regulation of the integrin family contributes to the therapeutic efficacy of PD-MSCs in the rat hepatic fibrosis model by BDL.

Efficiency of Density Gradient Centrifugation Method (Ludox method) Based on eDNA for the Analysis of Harmful Algal Bloom Potential (유해남조류 발생 잠재성 분석을 위한 eDNA 기반의 퇴적물 전처리 방법: 밀도 구배 원심분리법(Ludox method))

  • Kyeong-Eun Yoo;Hye-In Ho;Hyunjin Kim;Keonhee Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Environmental DNA (eDNA) can exist in both intracellular and extracellular forms in natural ecosystems. When targeting harmful cyanobacteria, extracellular eDNA indicates the presence of traces of cyanobacteria, while intracellular eDNA indicates the potential for cyanobacteria to occur. However, identifying the "actual" potential for harmful cyanobacteria to occur is difficult using the existing sediment eDNA analysis method, which uses silica beads and cannot distinguish between these two forms of eDNA. This study analyzes the applicability of a density gradient centrifugation method (Ludox method) that can selectively analyze intracellular eDNA in sediment to overcome the limitations of conventional sediment eDNA analysis. PCR was used to amplify the extracted eDNA based on the two different methods, and the relative amount of gene amplification was compared using electrophoresis and Image J application. While the conventional bead beating method uses sediment as it is to extract eDNA, it is unknown whether the mic gene amplified from eDNA exists in the cyanobacterial cell or only outside of the cell. However, since the Ludox method concentrates the intracellular eDNA of the sediment through filtration and density gradient, only the mic gene present in the cyanobacteria cells could be amplified. Furthermore, the bead beating method can analyze up to 1 g of sediment at a time, whereas the Ludox method can analyze 5 g to 30 g at a time. This gram of sediments makes it possible to search for even a small amount of mic gene that cannot be searched by conventional bead beating method. In this study, the Ludox method secured sufficient intracellular gene concentration and clearly distinguished intracellular and extracellular eDNA, enabling more accurate and detailed potential analysis. By using the Ludox method for environmental RNA expression and next-generation sequencing (NGS) of harmful cyanobacteria in the sediment, it will be possible to analyze the potential more realistically.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.