• Title/Summary/Keyword: PCR-CAPS

Search Result 20, Processing Time 0.025 seconds

Phylogenetic relationships of medicinal mushroom Sparassis crispa strains using the rDNA-ITS and CAPS analysis (rDNA-ITS 및 CAPS 분석에 의한 꽃송이버섯 (Sparassis crispa) 수집균주의 계통분류학적 특성구분)

  • Cheong, Jong-Chun;Lee, Myung-Chul;Jhune, Chang-Sung;Lee, Chan-Jung;Shin, Pyeong-Gyun
    • Journal of Mushroom
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • This study was carried out to analyze the genetic relationships among 22 strains of Sparassis crispa, which were collected from various regions of worldwide. The cleaved amplified polymorphic sequence were obtained from the ribosomal DNA ITS regions of each strain. Based on the sequence analysis, the presence of five different groups were observed. Most strains shared the high nucleotide sequence similarity (about 90%) to each other, except only one strain, KACC50866. Nucleotide sequence similarity of KACC50866 was below 10% to other strains, indicating the genetic relatedness of strain KACC50866 was low compared to other strains. More works such as mitochondria genome analysis should help to determine the precise genetic diversity of S. crispa strains.

  • PDF

Development of Cleaved Amplified Polymorphic Sequence (CAPS) Marker for Selecting Powdery Mildew-Resistance Line in Strawberry (Fragaria×ananassa Duchesne) (딸기 흰가루병 저항성 계통 선발을 위한 분자마커 개발)

  • Je, Hee-Jeong;Ahn, Jae-Wook;Yoon, Hae-Suk;Kim, Min-Keun;Ryu, Jae-San;Hong, Kwang-Pyo;Lee, Sang-Dae;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.722-729
    • /
    • 2015
  • Powdery mildew (PM) caused by Podosphaera aphanis is a major disease that can result in significant yield losses in strawberry (Fragaria ${\times}$ ananassa Duchesne). For preventing PM, pesticides are usually applied in strawberry. In this study, molecular markers were developed to increase breeding efficiency of PM-resistance cultivars by marker-assisted selection (MAS). An $F_2$ population derived from a cross between PM-resistance 'Seolhyang' and PM-susceptibility 'Akihime' was evaluated for disease resistance to PM and RAPD (random amplification of polymorphic DNA)-BSA (bulked segregant analysis). Among 200 RAPD primers tested, OPE10 primer amplified a 311bp-band present in with 331bp. Sequence alignment performed for searching polymorphisms and six single nucleotide polymorphism (SNP) were found in amplified regions. To develop polymorphic marker for distinguishing between resistant and susceptible, RAPD was converted to cleaved amplified polymorphic sequence (CAPS) marker. Among restriction enzymes associated with six SNPs, Eae I (Y/GGCCR) was successfully digested to 231bp in susceptible. The results suggest that the selected CAPS marker could be used for increasing efficiency of selecting powdery mildew resistant strawberry in breeding system.

Development and Application of a Cleaved Amplified Polymorphic Sequence Marker for Discriminating A Mating Type Alleles of Lentinula edodes (표고 A 교배형 구분을 위한 CAPS 마커의 개발 및 적용)

  • Park, Mi-Jeong;Ryoo, Rhim;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.389-396
    • /
    • 2020
  • Lentinula edodes is one of the most widely consumed edible mushrooms in Korea. Mating in L. edodes is regulated by a tetrapolar system, and two unlinked genetic loci, A and B, are known to be major determinants of the mating types, as reported in other heterothallic basidiomycetes. The A locus of L. edodes encodes a pair of homeodomain (HD) transcription factors. The highly variable N-termini of these HD transcription factors contribute to the diversity among the A mating types. In this study, we developed a cleaved amplified polymorphic sequence (CAPS) marker to discriminate 11 different A mating type alleles predominant among both cultivated and wild strains. Amplification of the variable region of the A locus followed by digestion with HaeIII and EcoRI restriction enzymes enabled successful discrimination among the 11 A mating type alleles. We also evaluated the applicability of this method in the identification of two A mating types of a dikaryotic strain.

D2 Dopamine Receptor (DRD2) Gene Polymorphism and Combat-Related Posttraumatic Stress Disorder in Vietnam Veterans (월남전 참전 재향군인에서 도파민 D2 수용체 유전자 다형성과 외상후 스트레스 장애)

  • Lee, Soo-Young;Chung, Hae-Gyung;Kim, Tae-Yong;Choi, Jin-Hee;Chung, Moon-Yong;So, Hyoung-Seok;Shin, Han-Sang;Lee, Shi-Eun
    • Anxiety and mood
    • /
    • v.4 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Objective : Evidence from recent studies supports the role of genetic factors in the development of Posttraumatic Stress Disorder (PTSD). The primary aim of this study is to investigate the association between the dopamine D2 receptor (DRD2) TaqI A polymorphism and PTSD. The second aim is to examine the association between the DRD2 TaqI A polymorphism and clinical symptoms in patients with PTSD. Methods : We recruited 189 Vietnam veterans for participation in this study, among whom 99 were PTSD patients and 90 were control subjects. The presence of the DRD2 TaqI A polymorphism was determined by polymerase chain reaction (PCR). Several standardized research scales were used in the clinical assessment of PTSD, including the Combat Exposure Scale (CES), Clinician Administered PTSD Scale (CAPS), Beck Depression Inventory (BDI), and Clinical Global Impression (CGI). Results : There was no significant difference in the distribution of the DRD2 genotype, frequency and prevalence of the A1 allele, or the frequency of heterozygotes between the patients with PTSD and the controls. In the PTSD group, the patients with the A1 allele (A1A1, A1A2) scored higher on the CAPS-total (p=0.044), CAPS-avoidance symptoms (p=0.016) and BDI (p=0.024) than those without the A1 allele (A2A2). Conclusion : We could not find an association between the dopamine D2 receptor (DRD2) TaqI A polymorphism and PTSD. However, the A1 allele of DRD2 seemsto influence avoidance symptoms in patients with PTSD.

  • PDF

A Set of Allele-specific Markers Linked to L Locus Resistant to Tobamovirus in Capsicum spp. (고추의 Tobamovirus 저항성 L 유전자좌와 연관된 대립유전자 특이적인 마커 세트)

  • Lee, Jun-Dae;Han, Jung-Heon;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.286-293
    • /
    • 2012
  • The resistance to Tobamovirus in Capsicum spp. has been known to be controlled by five different alleles ($L^0$, $L^1$, $L^2$, $L^3$, and $L^4$) of L locus on the telomere of long arm of pepper chromosome 11. To develop a set of molecular markers differentiating all the alleles of L locus, we used five pepper differential hosts including Capsicum annuum Early California Wonder (ECW, $L^0L^0$), C. annuum Tisana ($L^1L^1$), C. annuum Criollo de Morelos 334 (CM334, $L^2L^2$), Capsicum chinense PI 159236 ($L^3L^3$), and Capsicum chacoense PI 260429 ($L^4L^4$). Developing a series of CAPS or SCAR markers specifically linked to the alleles was allowed by the sequence comparison of PCR amplicons of the $L^3$-linked markers (189D23M, A339, and 253A1R) and BAC sequences (FJ597539 and FJ597541) in the pepper differentials. Genotypes deduced by these markers in 48 out of 53 $F_1$ hybrids of commercial pepper varieties were consistent with their phenotypes by bioassay using Tobamovirus pathotypes ($P_0$, $P_1$, and $P_{1,2$). Consequently, these markers can be useful to differentiate L alleles and for breeding Tobamovirus resistance in pepper with marker-assisted selection.

Characterization of the Lsi1 Homologs in Cucurbita moschata and C. ficifolia for Breeding of Stock Cultivars Used for Bloomless Cucumber Production

  • Jung, Jaemin;Kim, Joonyup;Jin, Bingkui;Choi, Youngmi;Hong, Chang Oh;Lee, Hyun Ho;Choi, Youngwhan;Kang, Jumsoon;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.333-343
    • /
    • 2017
  • Bloomless cucumber fruits are commercially produced by grafting onto the pumpkin stocks (Cucurbita moschata) to restricted silicon ($SiO_2$) absorption. Inhibition of silicon absorption in bloomless stocks is conferred by a mutant allele of the CmLsi1 homologous to Lsi1 in rice. In this study, we characterized the Lsi1 homologs in pumpkin (C. moschata) and its cold-tolerant wild relative C. ficifolia ('Heukjong') in order to develop a DNA marker for selecting a bloomless trait and to establish the molecular basis for breeding bloomless stock cultivars of C. ficifolia. A Cleaved amplified polymorphic sequence (CAPS) marker (CM1-CAPS) was designed based on a non-sysnonymous single nucleotide polymorphism (SNP, C>T) of the CmLsi1 mutant-type allele, and its applicability for Marker-assisted selection (MAS) was confirmed by evaluating three bloom and five bloomless pumpkin stock cultivars. Quantitative RT-PCR of the CmLsi1 for these stock cultivers implied that expression level of the CmLsi1 gene does not appear to be associated with the bloom/bloomless trait and may differ depending on plant species and tissues. A full length cDNA of the Lsi1 homolog [named CfLsi1($B^+$)] of 'Heukjong' (C. ficifolia), was cloned and sequence comparison between CmLsi1($B^+$) and CfLsi1($B^+$) revealed that there exists total 24 SNPs, of which three were non-synonymous. Phylogenetic analysis of CfLsi1($B^+$) and Lsi1 homologs further revealed that CfLsi1($B^+$) is closesly related to Nodulin 26-like intrinsic proteins (NIPs) and most similar to CpNIP1 of C. pepo than C. moschata.

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Genetic DNA Marker for A2 mating type in Phytophthora infestans

  • Kim, Kwon-Jong;Lee, Youn-Su
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.254-259
    • /
    • 2002
  • The Phytophthora infestans requires two mating types for sexual reproduction. Amplified fragment length polymorphism (AFLP) was used to specifically detect different mating types of P. infestans. The AFLP primers E+AA (5'-GACTGCGTACCAATTCAA-3') and M+CAA (5'-GATGAGTCCTGAG-TAAC AA-3') detected a fragment that is specific in the A2 mating type of P. infestans. This fragment was cloned and sequenced. Based on the sequence data, PHYB-1 and PHYB-2 primer were designed to detect the A2 mating type of P. infestans. A single 347 bp segment was observed in the A2 mating type of P. infestans, but not in the A1 mating type of P. infestans or other Phytophthora spp. Identification of mating type was performed with phenotype (sexual reproduction) and genotype (CAPs marker) methods. Two factors, the annealing temperature and template DNA quantity, were investigated to determine the optimal conditions. Using mating type-specific primers, a unique band was obtained within annealing temperatures of 57$^{\circ}C$-62$^{\circ}C$ and DNA levels of 10pg-100 ng (data not shown).

Confirmation of Parentage of the Pear Cultivar 'Niitaka' (Pyrus pyrifolia) Based on Self-incompatibility Haplotypes and Genotyping with SSR Markers

  • Kim, Hoy-Taek;Nou, Ill-Sup
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • The parentage of the horticulturally important pear cultivar 'Niitaka' was confirmed by determining its S-genotypes based on the S-RNase and $PpSFBB^{-{\gamma}}$ genes, and genotyping using simple sequence repeat (SSR) markers. Previous reports suggested that the cultivars 'Amanogawa' and 'Imamuraaki' were the parents of 'Niitaka', although the cultivars 'Chojuro' and 'Shinchu' were also examined as candidate parents, along with two other cultivars. In the present study, the S-genotype of 'Niitaka' was determined to be $S^3S^9$. The $S^9$-RNase of 'Niitaka' was found to be likely inherited from the parent 'Amanogawa' ($S^1S^9$) and the $S^3$-RNase from 'Chojuro' ($S^3S^5$) or 'Shinchu' ($S^3S^5$). Based on the S-genotypes, the cultivar 'Imamuraaki' ($S^1S^6$) had no contribution to the parentage of 'Niitaka' ($S^3S^9$). A total of 67 polymorphic SSR markers were used to further confirm the parentage of 'Niitaka'. Discrepancies were found at several SSR loci between 'Niitaka' and the cultivars 'Imamuraaki' and 'Shinchu', whereas 'Niitaka' inherited alleles from 'Amanogawa' and 'Chojuro' at all SSR loci. Therefore, our findings established that 'Amanogawa' and 'Chojuro' are the parents of pear cultivar 'Niitaka', and not 'Imamuraaki' as previously reported.

PCR-based markers to select plastid genotypes of Solanum acaule (Solanum acaule 색소체 유전자형 선발을 위한 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.178-186
    • /
    • 2022
  • The tetraploid Solanum acaule is a wild potato species from Bolivia widely used for potato breeding because of its diverse attractive traits, including resistance to frost, late blight, potato virus X, potato virus Y, potato leafroll virus, potato spindle tuber viroid, and cyst nematode. However, the introgression of useful traits into cultivated potatoes via crossing has been limited by differences in endosperm balance number between species. Somatic fusion could be used to overcome sexual reproduction barriers and the development of molecular markers is essential to select proper fusion products. The chloroplast genome of S. acaule was sequenced using next-generation sequencing technology and specific markers for S. acaule were developed by comparing the obtained sequence with those of seven other Solanum species. The total length of the chloroplast genome is 155,570 bp, and 158 genes were annotated. Structure and gene content were very similar to other Solanum species and maximum likelihood phylogenetic analysis with 12 other species belonging to the Solanaceae family revealed that S. acaule is very closely related to other Solanum species. Sequence alignment with the chloroplast genome of seven other Solanum species revealed four InDels and 79 SNPs specific to S. acaule. Based on these InDel and SNP regions, one SCAR marker and one CAPS marker were developed to discriminate S. acaule from other Solanum species. These results will aid in exploring evolutionary aspects of Solanum species and accelerating potato breeding using S. acaule.