DOI QR코드

DOI QR Code

Characterization of the Lsi1 Homologs in Cucurbita moschata and C. ficifolia for Breeding of Stock Cultivars Used for Bloomless Cucumber Production

  • Jung, Jaemin (Department of Horticultural Bioscience, Pusan National University) ;
  • Kim, Joonyup (Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jin, Bingkui (Department of Horticultural Bioscience, Pusan National University) ;
  • Choi, Youngmi (Department of Horticultural Bioscience, Pusan National University) ;
  • Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Lee, Hyun Ho (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Choi, Youngwhan (Department of Horticultural Bioscience, Pusan National University) ;
  • Kang, Jumsoon (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Younghoon (Department of Horticultural Bioscience, Pusan National University)
  • Received : 2017.03.02
  • Accepted : 2017.04.24
  • Published : 2017.06.28

Abstract

Bloomless cucumber fruits are commercially produced by grafting onto the pumpkin stocks (Cucurbita moschata) to restricted silicon ($SiO_2$) absorption. Inhibition of silicon absorption in bloomless stocks is conferred by a mutant allele of the CmLsi1 homologous to Lsi1 in rice. In this study, we characterized the Lsi1 homologs in pumpkin (C. moschata) and its cold-tolerant wild relative C. ficifolia ('Heukjong') in order to develop a DNA marker for selecting a bloomless trait and to establish the molecular basis for breeding bloomless stock cultivars of C. ficifolia. A Cleaved amplified polymorphic sequence (CAPS) marker (CM1-CAPS) was designed based on a non-sysnonymous single nucleotide polymorphism (SNP, C>T) of the CmLsi1 mutant-type allele, and its applicability for Marker-assisted selection (MAS) was confirmed by evaluating three bloom and five bloomless pumpkin stock cultivars. Quantitative RT-PCR of the CmLsi1 for these stock cultivers implied that expression level of the CmLsi1 gene does not appear to be associated with the bloom/bloomless trait and may differ depending on plant species and tissues. A full length cDNA of the Lsi1 homolog [named CfLsi1($B^+$)] of 'Heukjong' (C. ficifolia), was cloned and sequence comparison between CmLsi1($B^+$) and CfLsi1($B^+$) revealed that there exists total 24 SNPs, of which three were non-synonymous. Phylogenetic analysis of CfLsi1($B^+$) and Lsi1 homologs further revealed that CfLsi1($B^+$) is closesly related to Nodulin 26-like intrinsic proteins (NIPs) and most similar to CpNIP1 of C. pepo than C. moschata.

Keywords

References

  1. Carmo DL, Silva CA, Lima JM, Pinheiro GL (2016) Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils. Rev Bras Solo 40:e0140795
  2. Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57(5):810-818. doi:10.1111/j.1365- 313X.2008.03728.x
  3. Choi EK, Kim B, Hwang US, Do HW, Suh DH (2013) Characterization of Blooming on Cucumber Fruits. Korean J Hort Sci Technol 31(2):159-164 https://doi.org/10.7235/hort.2013.12160
  4. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363: 557-572. doi:10.1098/rstb.2007.2170
  5. Food and Agriculture Organization of the United Nations (2014) FAO. http://www.fao.org/faostat/en/#data/QC/visualize
  6. Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011) Review : The Importance of Molecular Markers in Plant Breeding Programmes. Global Journal of Science Frontier Research 11(5)
  7. Kim HG, Yeo SS, Han DY, Park YH (2015) Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops. Korean J Hort Sci Technol 33(1)93-105. doi:10.7235/hort.2015.14120
  8. Korean Statistical Information Service (2015) KOSIS. http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parentId=F# SubCont
  9. Kwon YS, Choi KJ (2013) Construction of a DNA Profile Database for Commercial Cucumber (Cucumis sativus L.) Cultivars Using Microsatellite Marker. Korean J Hort Sci Technol 31(3):344-351 https://doi.org/10.7235/hort.2013.13008
  10. Lee SY, Chung SM (2011) Genetic Analysis of Polymorphic DNA Markers in Cucumber. J Life Science 31(3):468-472
  11. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2\;{\Delta}{\Delta}CT$ method. Methods 25:402-408. doi:10.1006/meth.2001.1262
  12. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688-691. doi:10.1038/nature04590
  13. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435 442. doi:10.1016/ j.tplants.2015.04.007
  14. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727-741 https://doi.org/10.1007/s11103-004-1965-5
  15. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50(1):5-12. doi:10.1093/pcp/ pcn110
  16. Mitani-Uneo N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6(7):991-994. doi:10.4161/psb.6.7.15462
  17. Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66(2):231-240. doi:10.1111/j.1365-313X.2011.04483.x
  18. Obrero A, Die JV, Roman B, Gomez P, Nadal S, Gonzalez-Verdejo CI (2011) Selection of Reference Genes for Gene Expression Studies in Zucchini (Cucurbita pepo) Using qPCR. J Agric Food Chem 59(10):5402-5411 https://doi.org/10.1021/jf200689r
  19. Patrick Jr WH, Yusuf A, Jugsujinda A (1987) Effects of Soil pH and Eh on Growth and Nutrient Uptake by Rice in a Flooded Oxisol of Sitiung Area of Sumatra, Indonesia
  20. Robinson RW, Decker-Walters DS (1997) Crop production science in horticulture series: cucurbits, CABI Publishing, Massachusetts, USA, pp 51-53
  21. Schaefer HC, Heibl C, Renner SS (2009) Gourds afloat: A dated phylogeny reveals an Asian orgin of the gourd family(Cucurbitaceae) and numerous oversea dispersal events. Proc Biol Sci 276:843-851. doi: 10.1098/rspb.2008.1447
  22. Seo JB, Choi KJ, Lee JW, Yang WM, Chung SJ (2004) Growth Characteristics of White Spine Cucumber by Bloomless Stock Cultivars. Korean J Hort Sci Technol 22(4):398-402
  23. Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H (2017) Isolation and functional characterization of CsLsi1 , a silicon transporter gene in Cucumis sativus. Physiologia Plantarum 159(2):201-214. doi: 10.1111/ppl.12515
  24. Szulc W, Rutkowska B, Hoch M, Spychaj-Fabisiak E, Murawska B (2015) Exchangeable silicon content of soil in a long-term fertilization experiment. Plant Soil Environ 61(10):458-461. doi:10.17221/438/2015-PSE
  25. Tachibana S (1988) The influence of root temperature on nitrate assimilation by cucumber and figleat gourd. Japan J Soc Hort Sci 57(3):440-447 https://doi.org/10.2503/jjshs.57.440
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28(10):2731-2739. doi: 10.1093/molbev/msr121
  27. Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Report 1:3-8
  28. UNI-PASS (2015) UNI-PASS. https://unipass.customs.go.kr:38030/ets/index.do
  29. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26 like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA) Biomembranes 1758(8):1165-1175. doi/10.1016/ j.bbamem.2006.03.024
  30. Yamaji N, Ma JF (2007) Spatial Distribution and Temporal Variation of the Rice Silicon Transporter Lsi1.Plant Physiol143:1306-1313.doi:10.1104/pp.106.093005
  31. Yamaji N, Mitatni N, Ma JF (2008) A Transporter Regulating Silicon Distribution in Rice Shoots. Plant Cell Online 20(5):1381-1389. doi:10.1105/tpc.108.059311
  32. Yamamoto Y, Hayashi M, Kanamaru T, Watanabe T, Mametsuka S, Tanaka Y (1989) Studies on bloom on the surface of cucumber fruits. 2. Relation between the degree of bloom occurrence and contents of mineral elements. Bull Fukuoka Agric Res Cent9:1-6

Cited by

  1. Foliar or subirrigational silicon supply modulates salt stress in strawberry during vegetative propagation vol.59, pp.1, 2017, https://doi.org/10.1007/s13580-018-0002-6
  2. Phytolith Formation in Plants: From Soil to Cell vol.8, pp.8, 2017, https://doi.org/10.3390/plants8080249