• Title/Summary/Keyword: PCR inhibitor

Search Result 393, Processing Time 0.024 seconds

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

Design and Synthesis of p-hydroxybenzohydrazide Derivatives for their Antimycobacterial Activity

  • Bhole, Ritesh.P.;Borkar, Deepak.D.;Bhusari, Kishore.P.;Patil, Prashant.A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.236-245
    • /
    • 2012
  • The main mycobacterial infection in human is tuberculosis caused by Mycobacterium tuberculosis. Tuberculosis is the leading infectious cause of death in the world. Therefore there is continuing and compelling need for new and improved treatment for tuberculosis. The entire logic towards design of new compounds containing 4-hydroxy-N'-(1,3-thiazoldin- 2-yldene)benzohydrazide moiety is basically for superior antimycobacterial activity. The recent advances in QSAR and computer science have provided a systematic approach to design a structure of any compound and further, the biological activity of the compound can be predicted before synthesis. The 3D-QSAR studies for the set of 4-hydroxy-N'-(1,3-thiazoldin- 2-yldene)benzohydrazide and their derivatives were carried out by using V-life MDS (3.50). The various statistical methods such as Multiple Linear Regression (MLR), Partial Least Square Regression (PLSR), Principle Component Regression(PCR) and K nearest neighbour (kNN) were used. The kNN showed good results having cross validated $r^2$ 0.9319, $r^2$ for external test set 0.8561 and standard error of estimate 0.2195. The docking studies were carried out by using Schrodinger GLIDE module which resulted in good docking score in comparison with the standard isoniazid. The designed compounds were further subjected for synthesis and biological evaluation. Antitubercular evaluation of these compounds showed that (4.a), (4.d) and (4.g) found as potent inhibitor of H37RV.

Aberrant Epigenetic Alteration in Eca9706 Cells Modulated by Nanoliposomal Quercetin Combined with Butyrate Mediated via Epigenetic-NF-κB Signaling

  • Zheng, Nai-Gang;Wang, Jun-Ling;Yang, Sheng-Li;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4539-4543
    • /
    • 2014
  • Since the epigenetic alteration in tumor cells can be reversed by the dietary polyphenol quercetin (Q) or butyrate (B) with chemopreventive activity, suggesting that Q or B can be used for chemopreventive as well as therapeutic agent against tumors. In this study the polyphenol flavonoid quercetin (Q) or sodium butyrate (B) suppressed human esophageal 9706 cancer cell growth in dose dependent manner, and Q combined with B (Q+B) could further inhibit Eca9706 cell proliferation than that induced by Q or B alone, compared with untreated control group (C) in MTT assay. The reverse expressions of global DNMT1, $NF-{\kappa}Bp65$, HDAC1 and Cyclin D1 were down-regulated, while expressions of caspase-3 and $p16INK4{\alpha}$ were up-regulated, compared with the C group in immunoblotting; the down-regulated HDAC1-IR (-immunoreactivity) with nuclear translocation, and up-regulated E-cadherin-IR demonstrated in immunocytochemistry treated by Q or B, and Q+B also displayed further negatively and positively modulated effects compared with C group. The order of methylation specific (MS) PCR of $p16INK4{\alpha}$: C>B/Q>Q+B group, while the order of E-cadherin expression level was contrary, Q+B>Q/B>C group. Thus, Q/B, especially Q+B display reverse effect targeting both altered DNA methylation and histone acetylation, acting as histone deacetylase inhibitor mediated via epigenetic-$NF-{\kappa}B$ cascade signaling.

Effect of Trichostatin A on CNE2 Nasopharyngeal Carcinoma Cells - Genome-wide DNA Methylation Alteration

  • Yang, Xiao-Li;Zhang, Cheng-Dong;Wu, Hua-Yu;Wu, Yong-Hu;Zhang, Yue-Ning;Qin, Meng-Bin;Wu, Hua;Liu, Xiao-Chun;Lina, Xing;Lu, Shao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4663-4670
    • /
    • 2014
  • Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor. We here investigated its effects on proliferation and apoptosis of the CNE2 carcinoma cell line, and attempted to establish genome-wide DNA methylation alteration due to differentially histone acetylation status. After cells were treated by TSA, the inhibitory rate of cell proliferation was examined with a CCK8 kit, and cell apoptosis was determined by flow cytometry. Compared to control, TSA inhibited CNE2 cell growth and induced apoptosis. Furthermore, TSA was found to induce genome-wide methylation alteration as assessed by genome-wide methylation array. Overall DNA methylation level of cells treated with TSA was higher than in controls. Function and pathway analysis revealed that many genes with methylation alteration were involved in key biological roles, such as apoptosis and cell proliferation. Three genes (DAP3, HSPB1 and CLDN) were independently confirmed by quantitative real-time PCR. Finally, we conclude that TSA inhibits CNE2 cell growth and induces apoptosis in vitro involving genome-wide DNA methylation alteration, so that it has promising application prospects in treatment of NPC in vivo. Although many unreported hypermethylated/hypomethylated genes should be further analyzed and validated, the pointers to new biomarkers and therapeutic strategies in the treatment of NPC should be stressed.

수컷 흰쥐 생식기관에서의 5-HT 수용체 아형의 유전자 발현과 조절

  • Lee, Jong-Hwa;Lee, Gyeong-Yeop;Jeon, Yun;Lee, Seong-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.65-65
    • /
    • 2003
  • Serotonin(5-hydroxytriptamine, 5-HT)은 biogenic amlne류 신경전달물질로써, 다양한 생리조절활성을 갖고있다. 생식과 관련된 5-HT 기능으로 최근 사정 기능의 조절 가능성이 제시되었는데, 항우울제로 흔히 사용되는 selective serotonin reuptake inhibitor(SSRI) 계 약물을 장기 투여할 때 Premature ejaculation이 개선된다는 임상적인 증거들이 보고되었다. 본 연구는 수컷 흰쥐를 사용하여 생식기관, 특히 사정과 관계되는 기관들에서의 5-HT 수용체 아형들의 유전자 발현 여부와 그 조절 기작을 조사하였다. 흰쥐 수컷의 생식장기들인 고환, 부정소, 정관, 정낭에서 사정현상에 관여하리라 추정되는 세로토닌 수용체 아형들(type 1A, 1B, 2C)의 유전자 발현을 RT-PCR과 Southern blot으로 확인하였다. SSRI(sertraline)을 흰쥐에 매일 투여하는 모델(25mg/개체, 2주간)에서 1A 아형의 발현의 경우 정낭에서는 감소하였으나 정관에서는 증가하였고, 1B 아형의 발현은 두 장기에서 공히 증가하였다. 고환 제거후 testosterone(T) 보충 실험 모델을 사용한 실험에서, 정낭에서의 1A와 1B 발현은 T 보충에 의해 감소하였고, 정관에서는 큰 변화가 없었다. 한편 고환, 정낭과 정관에서의 세로토닌 수용체 아형 1A와 1B의 발현은 사춘기의 개시와 함께 증가하였다가 이후 점차 감소하는 경향을 보였다. 본 연구 결과는 사정 현상에 있어서 말초성 세로토닌 시스템이 중요한 역할을 담당할 가능성을 시사하는 것으로써, (i) 고등 포유동물에서의 사정 기작의 조절에 대한 과학적인 이해를 증진시키고, (ⅱ) 세로토닌 수용체 아형간의 특이한 발현과 작용에 대한 이해를 통해 보다 효과적인 사정 부전 치료법 개발을 시도할 수있고, (ⅲ) ontogeny와 sex steroid 의존성에 관련된 연구 시도는 노화와 관련된 사정능력의 변화와 같은 남성과학 분야로의 접목을 기할 수 있다고 사료된다.

  • PDF

Changes of Plasminogen Activator Activity under Heat Stress Condition in Porcine Endometrium

  • Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2019
  • The aim of this study was to investigate effect of heat stress on expression levels of plasminogen activators (PAs) related mRNAs and proteins, and changes of PAs activity in porcine endometrial explants. The endometrial explants (200 ± 50 mg) were isolated from middle part of uterine horn at follicular phase (Day 19-21) and were pre-incubated in serum-free culture medium at 38.5℃ in 5% CO2 for 18 h. Then, the tissues were transferred into fresh medium and were cultured at different temperature (38.5, 39.5, 40.5 or 41.5℃) for 24 h. The expression level of urokinase-type PA (uPA), type-1 PA inhibitor (PAI-1), type-2 PAI (PAI-2), and heat shock protein-90 (HSP-90) mRNA were analysis by reverse-transcription PCR and proteins were measured by western blotting. The supernatant were used for measurement of PAs activity. In results, mRNA and protein levels of HSP-90 was higher in 41.5℃ treatment groups than other treatment groups (p < 0.05). The expression of uPA, PAI-1, and PAI-2 mRNA were slightly increased by heat stress, however, there were no significant difference. Heat stress condition suppressed expression of active uPA and PAI-2 proteins (p < 0.05), whereas PAI-1 protein was increased (p < 0.01). Although PAI-1 protein was increased and active uPA was decreased, PAs activity was greatly enhanced by exposure of heat stress (p < 0.05). These results suggest that heat stress condition could change intrauterine microenvironment through regulation of PAs activity and other factors regarding with activation of PAs might be regulate by heat stress. Therefore, more studies regarding with regulatory mechanism of PAs activation are needed.

Platelet-Activating Factor Enhances Experimental Pulmonary Metastasis of Murine Sarcoma Cells by Up-regulation of Matrix Metalloproteinases-9 Through NF-$\kappa$B-Dependent Pathway

  • Ko, Hyun-Mi;Back, Hae-Kyong
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, a process that is necessary for angiogenesis, tumor invasion and metastasis. Platelet-activating factor (PAP) increases angiogenesis, tumor growth and metastasis through nuclear factor (NF)-$\kappa$B activation. Based on these facts, the involvement of MMPs in PAF-induced pulmonary metastasis was investigated in murine sarcoma cells, MMSV-BALB/3T3. Messenger RNA expression and enzymatic activity of MMP-9 were assessed by RT-PCR and zymography, and cell migration and metastasis were done for the detection of MMP-9 functional activity. PAP induced mRNA expression and enzymatic activity of MMP-9, and its effects were either inhibited by the PAP antagonist, WEB 2170 or by the NF-$\kappa$B inhibitor, parthenolide, or p65 antisense oligonucleotide in a dose-dependent manner. In addition, PAF induced promoter activity of MMP-9, which was inhibited by WEB 2170, phenanthroline, NAC, PDTC. These results indicate that PAF induces mRNA expression and enzymatic activity of MMP-9 in NF-$\kappa$B dependent manner. Cell migration assay showed that PAF induced MMSV-BALB/3T3 migration, and its effect was significantly inhibited by treatment with phenanthroline. PAF enhanced pulmonary metastasis of murine sarcoma cells, MMSV-BALB/3T3 was also reduced by phenanthroline. These results suggest that PAF-enhanced cell migration and pulmonary metastasis is mediated through the expression of MMP. In conclusion, It is suggested that PAF enhances pulmonary metastasis by inducing MMP-9 expression via the activation of NF-$\kappa$B.

  • PDF

Inhibitory Effect of Resveratrol on Lipopolysaccharide-induced p21 (WAF1/CIP1) and Bax Expression in Astroglioma C6 Cells (C6 신경교세포에서 lipopolysaccharide에 의한 p21 (WAF1/CIP1) 및 Bax의 발현증가에 미치는 resveratrol의 영향)

  • Kim, Young-Ae;Lim, Sun-Young;Rhee, Sook-Hee;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.124-129
    • /
    • 2005
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including anti-oxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects, but its molecular mechanism is poorly understood. In this study, we examined the effects of resveratrol on lipopolysaccharide (LPS)-induced growth inhibitory activity and cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. It is shown that LPS induced time-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of LPS was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in LPS-treated C6 cells without alteration of anti-apoptotic Bcl-2 and Bcl-XL expression. However, resveratrol significantly inhibited LPS-induced p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent.

G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells (온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향)

  • Goo, In-Moo;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.