• Title/Summary/Keyword: PCR differentiation

Search Result 706, Processing Time 0.025 seconds

Osteoclast Differentiation of Polygoni Cuspidati Radix Extracts Effects and Mechanism of Inhibition Studies (호장근(虎杖根)의 파골세포 분화 억제 효과와 기전 연구)

  • Jang, Hee-Jae;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Objectives: This study was conducted to evaluate the inhibitory effect of polygoni cuspidati radix (PCR) extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of PCR extract in BMMs stimulated with RANKL. Tartrate resistant acid phosphatase (TRAP) staining, TRAP activity and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. actin ring formation were analysed to observe the effect of PCR extract. Results: PCR decreased the number of TRAP positive cells and TRAP activities in BMMs stimulated with RANKL and M-CSF. PCR restrained the formation of actin ring. PCR down regulated the induction of NFATc1, c-Fos, TRAP and OSCAR by RANKL. PCR inhibited NF-${\kappa}B$ activity by inducing degradation of $I{\kappa}B{\alpha}$. Conclusions: We suggest that PCR Extracts can be an effective therapeutic agent on osteoclast differentiation caused by diseases such as osteoporosis.

Molecular Differentiation of Schistosoma japonicum and Schistosoma mekongi by Real-Time PCR with High Resolution Melting Analysis

  • Kongklieng, Amornmas;Kaewkong, Worasak;Intapan, Pewpan M.;Sanpool, Oranuch;Janwan, Penchom;Thanchomnang, Tongjit;Lulitanond, Viraphong;Sri-Aroon, Pusadee;Limpanont, Yanin;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.651-656
    • /
    • 2013
  • Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were $84.5{\pm}0.07^{\circ}C$ and $85.7{\pm}0.07^{\circ}C$, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts.

Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells (다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사)

  • Kim, Jung-Mo;Cho, Youn-Jeong;Son, On-Ju;Hong, Ki-Sung;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.

Identification and Differentiation of Cucumber Mosaic Virus Isolated from Forsythia koreana (CMV-Fk) Using PCR Techniques (PCR기법을 이용한 오이 모자이크 바이러스 개나리 분리주(CMV-Fk)의 동정과 구분)

  • 이상용;박선정;최장경
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 1998
  • Reverse transcription and polymerase chain reaction (RT-PCR) techiniques were used to identification and differentiation of cucumber mosaic virus isolated from Forsythia koreana (CMV-Fk). RT-PCT used by two set of 20-mer primers one was CMV-common primers and another was CMV subgroup I-specific primers designed in a conserved region of the 3' end of CMV RNA3, amplified about 490 bp and 200 bp DNA fragments from CMV-Fk, respectively. CMV could be detected by RT-PCR at a dilution as low as 10-4 in forsythia crude sap extracts. Restriction enzyme analysis of RT-PCR products using EcoRI and MspI showed that CMV-Fk belonged to CMV subgroup I. But, analysis of RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP-PCR) showed heterogeneity of RNA3 between CMV-Fk and CMV-Y as a member of subgroup I.

  • PDF

Identification of Nuclear Receptors by RT-PCR in F9 Cells Induced by Ginsenosides

  • Youl-Nam Lee;Shi
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.147-152
    • /
    • 1997
  • Ginsenosides $Rh_1$ and $Rh_2$ Induced the differentiation of F9 teratocarcinoma stem cells. These agents are structurally similar to the steroid hormones, therefore, we speculated that the steroid receptor (s) or novel nuclear receptor (s) could be involved in the differentiation process induces by them. Based on this speculation, we tried to alone new nuclear receptors with reverse transcription-polymerase chain reaction (RT-PCR) method by isolating RNA from F9 teratocarcinoma cells induced by ginsenosides. By using RT-PCR with degenerated primers from highly conserved DNA binding domain of nuclear receptors, we identified several nuclear receptors. In northern blot analysis we found that these clones are transcriptionally regulated by ginsenoside Rhl or Rh2 treatment. Further characterizations of these clones are needed to identify the mechanism of gene expression, which has an important role in the differentiation of F9 cells induced by ginsenosides.

  • PDF

MicroRNA Analysis during Cultured Odontoblast Differentiation

  • Park, Min-Gyeong;Lee, Myoung-Hwa;Yu, Sun-Kyoung;Park, Eu-Teum;Kim, Seog;Lee, Seul-Ah;Moon, Yeon-Hee;Kim, Heung-Joong;Kim, Chun-Sung;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • MicroRNAs (miRNAs, miRs) are about 21-25 nucleotides in length and regulate mRNA translation by base pairing to partially complementary sites, predominantly in the 3'-untranslated region (3'-UTR) of the target mRNA. In this study, the expression profile of miRNAs was compared and analyzed for the establishment of miRNA-related odontoblast differentiation using MDPC-23 cells derived from mouse dental papilla cells. To determine the expression profile of miRNAs during the differentiation of MDPC-23 cells, we employed miRNA microarray analysis, quantitative real-time PCR (qRT-PCR) and Alizaline red-S staining. In the miRNA microarray analysis, 11 miRNAs were found to be up- or down-regulated more than 3-fold between day 0 (control) and day 5 of MDPC-23 cell differentiation among the 1,769 miRNAs examined. In qRT-PCR analysis, the expression levels of two of these molecules, miR-194 and miR-126, were increased and decreased in the control MDPC-23 cells compared with the MDPC-23 cells at day 5 of differentiation, respectively. Importantly, the overexpression of miR-194 significantly accelerated mineralization compared with the control cultures during the differentiation of MDPC-23 cells. These results suggest that the miR-194 augments MDPC-23 cell differentiation, and potently accelerates the mineralization process. Moreover, these in vitro results show that different miRNAs are deregulated during the differentiation of MDPC-23 cells, suggesting the involvement of these genes in the differentiation and mineralization of odontoblasts.

A Trial of Screening of Genes Involved in Odontoblasts Differentiation from Human Dental Pulp Stem Cells

  • Park, Yoon-Kyu;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.167-173
    • /
    • 2012
  • This study investigated the genes involved in the differentiation of odontoblasts derived from human dental pulp stem cells (hDPSCs). hDPSCs isolated from human tooth pulp were validated by fluorescence activated cell sorting (FACS). After odontogenic induction, hDPSCs were analyzed investigated by Alizaline red-S staining, ALP assay, ALP staining and RT-PCR. Differential display-polymerase chain reaction (DD-PCR) was performed to screen differentially expressed genes involved in the differentiation of hDPSCs. By FACS analysis, the stem cell markers CD24 and CD44 were found to be highly expressed in hDPSCs. When hDPSCs were treated with agents such as ${\beta}$-glycerophosphate (${\beta}$-GP) and ascorbic acid (AA), nodule formation was exhibited within six weeks. The ALP activity of hDPSCs was found to elevate over time, with a detectable up-regulation at 14 days after odontogenic induction. RT-PCR analysis revealed that dentin sialophosphoprotein (DSPP) and osteocalcin (OC) expression had increased in a time-dependent manner in the induction culture. Through the use of DD-PCR, several genes were differentially detected following the odontogenic induction. These results suggest that these genes may possibly be linked to a variety of cellular process during odontogenesis. Furthermore, the characterization of these regulated genes during odontogenic induction will likely provide valuable new insights into the functions of odontoblasts.

Species Identification of Five Penaeid Shrimps Using PCR-RFLP and SSCP Analyses of 16S Ribosomal DNA

  • Khamnamtong, Bavornlak;Klinbunga, Sirawut;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.491-499
    • /
    • 2005
  • DNA-based molecular markers for differentiation of five penaeid shrimps (Penaeus monodon, P. semisulcatus, Feneropenaeus merguiensis, Litopenaeus vannamei and Marsupenaeus japonicus) were developed based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and single-stranded conformation polymorphism (SSCP) of 16S ribosomal (r) DNA. Differentiation of P. monodon, P. semisulcatus and L. vannamei can be unambiguously carried out by PCR-RFLP of 16S $rDNA_{560}$ whereas P. semisulcatus and M. japonicus shared a BABB mitotype. These shrimps were successfully discriminated by SSCP analysis of 16S $rDNA_{560}$. Nevertheless, the amplification success for L. vannamei and F. merguiensis was not consistent when tested against larger sample sizes. As a result, 16S $rDNA_{560}$ of an individual representing the most common mitotype of each species was cloned and sequenced. The new primer pair was designed and tested against the large sample sizes (312 bp product, N = 185). The amplification success was consistent across all species. PCR-RFLP of 16S $rDNA_{312}$ was as effective as that of 16S $rDNA_{560}$. Differentiation of all shrimp species were successfully carried out by SSCP analysis.

Differentiation of Intraspecific Groups within isolates of Rhizoctonia solani Using PCR-RFLP of Ribosomal DNA (Ribosomal DNA의 PCR-RFLP에 의한 국내산 Rhizoctonia solani 균주들의 종내그룹의 구분)

  • 홍승범;고승주;류진창;김완규;김인수
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.157-163
    • /
    • 1998
  • Genetic diversity among 27 isolates of Rhizoctonia solani, which were obtained from diseased crops in Korea and classified into 9 intraspecific groups by anastomosis test and cultural characteristics, was studied by PCR-RFLP. Gene regions of nuclear 17S ribosomal DNA and internal transcribed spacers including 5.8S rDNA of the isolates were amplified with polymerase chain reaction and digested with 12 restriction enzymes. Differences of restriction patterns were not shown among isolates within each intraspecific groups, however, each anastomosis group and culturala type sowed unique restriction fragment length polymorphisms by restriction patterns using HaeIII, Cfr13I and MspI. The results suggest that PCR-FRLP of rDNA using three restriction enzymes could be used to differentiate intraspecific groups of Rhizoctonia solani in Korea.

  • PDF

Microarray Profiling of Genes Differentially Expressed during Erythroid Differentiation of Murine Erythroleukemia Cells

  • Heo, Hyen Seok;Kim, Ju Hyun;Lee, Young Jin;Kim, Sung-Hyun;Cho, Yoon Shin;Kim, Chul Geun
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Murine erythroleukemia (MEL) cells are widely used to study erythroid differentiation thanks to their ability to terminally differentiate in vitro in response to chemical induction. At the molecular level, not much is known of their terminal differentiation apart from activation of adult-type globin gene expression. We examined changes in gene expression during the terminal differentiation of these cells using microarray-based technology. We identified 180 genes whose expression changed significantly during differentiation. The microarray data were analyzed by hierarchical and k-means clustering and confirmed by semi-quantitative RT-PCR. We identified several genes including H1f0, Bnip3, Mgl2, ST7L, and Cbll1 that could be useful markers for erythropoiesis. These genetic markers should be a valuable resource both as potential regulators in functional studies of erythroid differentiation, and as straightforward cell type markers.