• Title/Summary/Keyword: PCM(Phase Change Material)

Search Result 165, Processing Time 0.033 seconds

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

Combined Thermal Radiation with Turbulent Convection Conjugate PCM Model (난류 대류를 도입한 고온 축열 시스템 모델의 열복사 전달에 관한 연구)

  • Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.556-565
    • /
    • 1995
  • The physical model of interest is based upon the concentric cylinder, where the outside cylinder is filled with optically thick and high temperature phase change material(PCM). The fluid is flowing through the inside cylinder to transfer the appropriate energy. The fluid is flowing through the inside cylinder to transfer the appropriate energy. The governing equations for the phase change material including internal thermal radiation and for the turbulent transfer fluid have been employed and numerically solved. The optically thick phase change justifies the P-l spherical harmonics approximation, which is believed to be appropriate choice particularly for the much coupled problem like in this study. The solid/liquid interface, temperature distribution within the PCM and the heat flux from the PCM to the transfer fluid have been obtained and compared with those of laminar transfer fluid. The numerical results show that the turbulent transfer fluid accelerates the solid/liquid interface and results in the increase of heat transfer rate from the PCM. The internal thermal radiation within the PCM, however, does not always playa role to increase the heat transfer rate throughout the inside cylinder. It is believed that the combined heat flux has been picked up more in the inflowing area than in the pure conductive phase change material.

  • PDF

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

A study on characteristics of melting in a air-PCM heat exchanger (상변화 열교환기의 용융특성 연구)

  • Oh, Chang-Mook;Yoo, Young-June
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.127-129
    • /
    • 2011
  • In the building, controlling temperature is main concern for maintaining fresh environment. To control temperature, phase change material(PCM) can be used as a medium that keeps temperature in certain level. PCM has its own phase change temperature. PCM melts/solidifies while absorbing/releasing the heat. Because of the advantage, PCM can be applied to a air-PCM heat exchanger. In this study, the air-PCM heat exchanger was designed based on the system requirements and experimental analysis was conducted to study on the performance of the heat exchanger.

  • PDF

Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation (동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구)

  • Lee, Jin-Uk;An, Sang-Min;Kim, Taeyeon;Lee, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

Numerical study on battery thermal management system using phase change material with oscillating heat pipe (상변화물질과 맥동형 히트 파이프를 이용한 배터리 열 관리 시스템에 대한 수치해석적 연구)

  • Seung Hyun Park;Min Gi Chu;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.104-114
    • /
    • 2024
  • To effectively control heat generation resulting from advancements in fast discharging technology for electric vehicle batteries, hybrid Battery Thermal Management Systems (BTMS) are gaining attention. In this study, a BTMS combining Phase Change Material (PCM) with Oscillating Heat Pipe (OHP) was designed. During the phase change process of the PCM, the maximum battery temperature increased slowly. Additionally, due to the excellent heat transfer capability of the OHP, the PCM/OHP BTMS delayed the time when the maximum battery temperature exceeded 50 ℃ by 810 s compared to the PCM/copper fin BTMS, resulting in the maximum battery temperature that was 41.29 ℃ lower at 3600 s. Furthermore, in the section where the latent heat of the PCM had the greatest impact, the slope of the battery temperature difference was 0.0017 lower than that of the PCM/copper fin BTMS. Therefore, the PCM/OHP BTMS demonstrates its potential as a viable hybrid BTMS.

Material Characteristics of Rapid Hardening Cement Paste Using Phase Change Material for Semi-rigid Pavement (상변화물질을 사용한 반강성 포장용 초속경시멘트 페이스트 재료의 성능평가)

  • Kim, Seung-Su;Lee, Byung-Jae;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2016
  • A study to apply phase change material(PCM) to rapid hardening cement paste forming semi-rigid pavement was carried out. The characteristics fresh and hardened paste were evaluated through the experiment for a total of 6 mixtures according to the cement type and the substitution of phase change material for acrylate. The fluidity by substituting phase change material for acrylate satisfied the target flow time of 10 to 13 seconds. In case of setting time, it was possible to secure the performance of rapid hardening cement by substituting phase change material, and if the substitution ratio over 60%, the initial set occurred 1 to 2 minutes faster than other mixtures. In case of compressive strength and bond strength, it showed similar strength characteristics with the plain mixture, and it satisfied both the target compressive and bonding strength of 36MPa and 2MPa. The mixture substituting phase change material showed higher resistance to chloride ion penetration than the mixture only using acrylate and the OPC level was insufficient. From the results of physical and mechanical performances of semi-rigid pavement cement paste, the phase change material substitution rate of 20% was effective in the range of this study.

An Experimental Study on the Freezing Protection Valve Using Phase Change Material(PCM) for the Heat Exchanger (상변화물질(PCM)을 이용한 열교환기용 동파방지밸브에 관한 실험적 연구)

  • Yun, Jea-Ho;Kim, Joung-Ha;Jeong, Soon-Young;Yang, Yoon-Sub;Kim, Seong-Hyun;Song, Duk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.127-133
    • /
    • 2012
  • This paper is an experimental study on the freezing protection valve used for solar water heating, air-conditioning systems, and plumbing systems. When the phase change occurs from liquid to solid, most of the substances except water volumetrically shrink. And referred to as PCM(Phase Change Material) a substance with such properties, the phase change temperature varies depending on the material. To prevent the freezing of the plumbing system, such as air-conditioning system in the winter season, we developed a several types of freezing protection valve using PCM whose freezing temperature are $2-4^{\circ}C$. The working principle of the freezing protection valve is that the fluid inside the pipe is released to prevent the system-collapse when fluid temperature reaches the freezing temperature of the PCM. And then the valve is closed and returned to the original position automatically when the temperature of the operating fluid rises. In this paper, the operating temperatures, discharge flow rate and the response characteristics of the valve during the operation are tested and investigated. From the results of this research the freezing protection valves employing PCM are expected to be commercialized in the near future.

An experimental study on thermal performance evaluation of PCM mixed coating material constructed in and out of the wall (벽체 내·외부에 시공한 PCM혼입 도료의 열적성능 평가에 관한 실험적 연구)

  • Ju, Dong-Uk;Shin, Sang-Heon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.216-217
    • /
    • 2014
  • Optimum finishing position, thickness and phase change temperature of winter and summer season were selected and suitability of finishing materials was evaluated based on temperature measurement of specimens applying the coating material mixed phase change materials(PCM). As a result, when finishing position was interior and finishing thickness of coating material mixed n-Octadecane(28℃ PCM) was 4mm, thermal performance was effective. n-Octadecane in summer season and n-Hexadecane(18℃ PCM) in winter season are indicated effective on energy savings, respectively.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.