• Title/Summary/Keyword: PCL microcapsule

Search Result 12, Processing Time 0.023 seconds

Preparation of Fragrant Microcapsule for Reducing Stress (긴장완화를 위한 향기나는 마이크로캡슐의 제조)

  • Kim, Yoon A;Kim, So Hyun;Park, Ji Su;Lee, Da Som;Kim, Jin Gon;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • A fragrant microcapsule was prepared for use by students to reduce the stress of taking examinations. Rosmarinic acid was used as a fragrant oil which had the effect of relaxing stress, polycaprolactone (PCL) was used as a capsule wall material, and poly(vinyl alcohol) (PVA) as a stabilizer. The solvent evaporation method was used to form the microcapsule. The microcapsules were prepared by changing the stirring rate, the concentration of the stabilizer, and the molecular weight of PCL. The shape of the microcapsule was characterized by scanning electron microscopy (SEM). The size of the microcapsule was reduced by increasing the stirring speed. The release rate of rosmarinic acid was decreased when the higher molecular weight PCL was used. When the prepared microcapsule was tested in an aromatherapy class, the microencapsulated fragrant oil had a longer release time than the original fragrant oil. The study data showed that this fragrant oil was effective for increasing concentration ability, reducing stress, increasing digestive power, and increasing memory for the students.

Poly(ε-caprolactone) Microcapsule with Encapsulated Nifedipine Prepared by Magnetic Stirrer

  • Lee, Hyeran;Lee, Deuk Yong;Song, Yo-Seung;Kim, Bae-Yeon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • The microencapsulation of nifedipine (NF) with 4 wt% of poly(${\varepsilon}-caprolactone$) (PCL)/polyvinylpyrollidone (PVP) or PCL/polyethylene glycol (PEG) was carried out by solvent evaporation method in oil in water emulsion system to investigate the effect of PVP and PEG addition on drug release behavior of the microcapsules. The PVA (emulsifier) concentration of 1.0 wt% was chosen for the formation of PCL capsule having an average size of $154{\pm}25{\mu}m$ due to nearly spherical shape with a narrow size distribution. As PCL/PVP and PCL/PEG ratios were raised from 10/0 to 6/4, the capsule size increased gradually from $154{\pm}25{\mu}m$ to $236{\pm}32{\mu}m$ and $248{\pm}56{\mu}m$, respectively. The drug release rate of PCL/PVP and PCL/PEG capsules increased dramatically from 0 to 4 h at the beginning and then reached the plateau region from 20 h. As the concentration of PVP or PEG increased, the amount of drug release increased, suggesting that the larger capsule size was attributed to the higher drug content. However, the drug release behavior remained almost constant. The PCL capsules exhibited no evidence of causing cell lysis or toxicity regardless of NF loading, implying that the microcapsules are clinically suitable for use as drug delivery systems.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Erythromycin by Emulsion Solvent Evaporation Technique (액중건조법을 이용한 항생제를 함유한 생분해성 폴리카프로락톤 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.326-334
    • /
    • 2002
  • The purpose of this work was the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems (DDS) through drug release. The effects of different stirring rates, stirring times and concentrations of emulsifier for the diameter and form of the microcapsules were observed using image analyzer (IA) and scanning electron microscopy (SEM). As a result, the microcapsules were made in wrinkle and spherical forms with a mean particle size of 40~300$\pm$20 $mu extrm{m}$. PCL microcapsules containing drugs were confirmed using FT-IR spectra. The role of interfacial adhesion between PCL and drug was determined by contact angle measurements. The drug release test of PCL microcapsules was characterized by UV/vis. spectra. It was found that the drug release rate of the microcapsules prepared with high concentration emulsifier was significantly fast.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Release Behaviors of Poly(ε-caprolactone)/Poly(ethyleneimine) Microcapsules Containing Fragrant Oil (향오일을 함유한 Poly(ε-caprolactone)/Poly(ethyleneimine) 마이크로캡슐의 방출거동)

  • Park, Soo-Jin;Seok, Su-Ja
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.482-486
    • /
    • 2005
  • The biodegradable poly(${\varepsilon}$-caprolactone)(PCL)/poly(ethylene imine)(PEI) microcapsules containing $Al_2O_3$ and fragrant oil were prepared with different PEI contents. The effects of stirring rate and concentration of the surfactant on the diameter and morphologies of microcapsules were investigated by using scanning electron microscope (SEM). Thermal behaviors were studied by using a differential scanning calorimetry(DSC), and the release behaviors of fragrant oil from microcapsule were characterized by UV/vis. spectrophotometer. As a result, the average particle size of the microcapsules decreased with increasing the stirring rate or concentration of the surfactant. The surface morphologies of the microcapsules were changed from smooth surfaces to skin-like rough surfaces as increasing the PEI content. These results were mainly due to the increased hydrophilic groups at the microcapsule surfaces, resulting in increasing the release rate of fragrant oil in the microcapsules studied.

Preparations and Release Property of Poly(ε-caprolacton)/ethyl cellulose Microcapsule Containing Pluronic F127 (Pluronic F127을 함유하는 Poly(ε-caprolacton)/ethyl cellulose 마이크로 캡슐의 제조 및 방출 특성)

  • Hong, Yeon Ji;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.632-637
    • /
    • 2009
  • Poly(${\varepsilon}-caprolacton$)/ethyl cellulose (PCL/EC) microcapsules containing pluronic F127 were prepared by a spray drying method. The aqueous phase, 20% of pluronic F127 was dissolved in distilled water, and the organic phase, 5% of PCL and EC were dissolved in dichloromethane. The microcapsules were obtained by spray drying the water-in-oil (W/O) emulsion. According to the data of scanning electron microscopy and particle analyzer, tens of micro size microcapsules were observed. On a differential scanning calorimeter, the phase transition temperatures of microcapsules were observed and they were found around those of pluronic F127 and poly(${\varepsilon}-caprolacton$), which were the main components of the microcapsules. At the range of $30{\sim}45^{\circ}C$, temperature-dependent release properties were investigated using fluorescein isothicyanate-dextran (FITC-dextran) and blue dextran as a model drug. When the temperature was increased, the degree of release of microcapsule was also increased. FITC-dextran, the relative low molecular weight, was more released than blue-dextran.

Preparation of Biodegradable PCL Microcapsules Using Multiple Emulsions by Membrane Emulsification (막유화 다중 에멀젼을 이용한 생분해성 폴리카프로락톤(PCL) 마이크로캡슐의 제조)

  • Ji, Yeon-Ju;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.511-518
    • /
    • 2017
  • The membrane emulsification (ME) is a technology for producing emulsions with narrow size distribution by using the well-defined porous membranes such as the SPG membrane. In this study, the preparation of polycaprolactone (PCL) microcapsules by using the multiple emulsions obtained from membrane emulsification method is studied. After the making of $W_1/O$ single emulsions by sonication method, then $W_1/O/W_2$ multiple emulsions are formed by premix-ME method. The PCL microcapsules impregnated with BSA model drug are prepared by solvent evaporating from $W_1/O/W_2$ multiple emulsions. The effects of various parameters such as the ratio of disperse/continuous phase (D/C ratio), the concentration of PCL, emulsifier and model drug and the transmembrane pressure on the size and distribution of PCL microcapsules are investigated. The uniform PCL microcapsules with about $5{\sim}6{\mu}m$ of mean size and 26% of BSA loading are obtained by the premix membrane emulsification.

Preparation of Polycaprolactone Microcapsules by Membrane Emulsification Method and Its Drug Release Properties (막유화법에 의한 생분해성 Polycaprolactone 마이크로캡슐의 제조와 약물방출 특성)

  • Youm, Kyung-Ho;Yun, Tae-Ho;Kim, Kong-Soo;Cho, Suh-Hyeong
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.67-79
    • /
    • 2007
  • Uniform microcapsules containing ionic model drugs were prepared by controlling various conditions of emulsification procedure using a lab-scale membrane emulsification system with a SPG (Shirasu porous glass) tubular membrane. We observed the effects of various emulsification parameters [concentration and molecular weight of polycaprolatone (PCL) polymer, transmembrane pressure and emulsifier concentration in disperse phase and continuous phase, stirring speed] on the mean size and size ditribution of microcapsules containing lidocaine hydrochloride (cationic drug), sodium salicylate (nonionic drug) and 4-acetaminophen (anionic drug) used as a model drugs. Also, release characteristics of a model drugs from PCL microcapsules were investigated. Controlling membrane emulsification parameters, uniform PCL microcapsules with about $5\;{\mu}m$ of the mean size were finally prepared. The release rate and the burst effect of microcapsules were decreased in condition of the acidic solution, but it was increased in condition of the base solution.

Preparation and Release Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Tocopherol (토코페롤을 함유하는 생분해성 폴리($\varepsilon$-카프로락톤) 마이크로캡슐의 제조 및 방출 특성)

  • 박수진;김기석;민병각;홍성권
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.103-110
    • /
    • 2004
  • The biodegradable poly($\varepsilon$-caprolactone) (PCL) microcapsules containing tocopherol were prepared by oil-in-water emulsion solvent evaporation method. The features of the microcapsules were investigated in the manufacturing conditions and degradation behaviors. The form and structural feature of the microcapsules were measured by scanning electron microscope and X-ray diffraction, respectively. The surface free energy of the microcapsules was executed using contact angle measurement. As a result, the microcapsules were more stable and spherical with poly(vinyl alcohol) given in a surfactant. The surface free energy and crystallinity of microcapsules were decreased with increasing the core concentration, and degradation of PCL was occurred after 21 days. The release behaviors were examined by Uv/vis. spectrophotometer. It was found that the release rate of the microcapsules was increased with increasing the stirring rate, due to the increased interface between microcapsules and release media.

Release Behavior and Characterization of PCL Microcapsules Containing Lemongrass Oil (레몬그라스 오일을 함유하는 PCL마이크로캡슐의 특성과 방출거동)

  • Park, Jong-Kwon;Kim, Ji-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.341-346
    • /
    • 2015
  • In this study, poly ${\varepsilon}$-caprolactone(PCL) microcapsules containing lemongrass oil was prepared by the solvent evaporation method. Effects of concentrations of PCL and poly vinyl alcohol (PVA) as well as stirring speeds when preparing microcapsules were investigated. Specific peaks of lemongrass oil in PCL microcapsules at 1600 and $2900cm^{-1}$ were observed by FT-IR. The particle size and shape of microcapsules were also measured by polarizing microscope and optical microscopy. The average particle size of microcapsules decreased with increasing the stirring rate. At the stirring speed of 1500 rpm, and 1 wt% of each PCL and PVA concentrations, the smallest particles were formed. Collection efficiencies of lemongrass oil of 77.5% and 69.5% were obtained when 1.5 wt% of PCL and 2 wt% of PVA were used, respectively. In addition, the release behavior and antioxidant activity of lemongrass oil from PCL microcapsules were examined using UV-Vis spectrophotometry. When 0.5 wt% PCL and 2.0 wt% PVA were used with the slow stirring rate, microcapsules showed a fast release rate. The characteristics of antioxidant activity exhibited similar to that of the release behavior.