• Title/Summary/Keyword: PCI Express Gen2

Search Result 2, Processing Time 0.016 seconds

A Continuously Tunable LC-VCO PLL with Bandwidth Linearization Techniques for PCI Express Gen2 Applications

  • Rhee, Woo-Geun;Ainspan, Herschel;Friedman, Daniel J.;Rasmus, Todd;Garvin, Stacy;Cranford, Clay
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • This paper describes bandwidth linearization techniques in phase-locked loop (PLL) design for common-clock serial link applications. Utilizing a continuously tunable single-input dual-path LC VCO and a constant-gain phase detector, a proposed architecture is well suited to implementing PLLs that must be compliant with standards that specify minimum and maximum allowable bandwidths such as PCI Express Gen2 or FB-DIMM applications. A prototype 4.75 to 6.1-GHz PLL is implemented in 90-nm CMOS. Measurement results show that the PLL bandwidth and random jitter (RJ) variations are well regulated and that the use of a differentially controlled dual-path VCO is important for deterministic jitter (DJ) performance.

Design and Implementation of an Alternate System Interconnect based on PCI Express (PCI Express 기반 시스템 인터커넥트의 설계 및 구현)

  • Kim, Young Woo;Ren, Ye;Choi, WonHyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.74-85
    • /
    • 2015
  • PCI Express is a well-known and widely used de-facto system bus standard for connecting among a processor and IO devices. PCI Express is originated from old PCI standard, and its most of applications are limited to be used within a PC or server system. But, because of its fast speed, low power consumption, and good protocol efficiency, it is considered as one of a good candidate for an alternate system interconnect for many years. In this paper, we present design, implementation and early evaluation of an alternate system interconnect by utilizing PCI Express. The developed alternate system interconnect using PCI Express (named PCIeLINK) utilizes non-transparent bridging (NTB) technic which generally used in fail-over system in PCI and PCI Express. By using NTB technic, PCI Express device can be extended to outside of a system without electrical and logical problems arising during system boot and enumeration. To build up an alternate system interconnect, we designed and implemented a network interface card having multiple PCI Express ${\times}4$ connections (theoretically 20 Gbps) and tested, The early test results revealed that an ${\times}4$ port in the card showed 8.6 Gbps peak performance for bulk transmission and 5.1 Gbps peak for normal TCP/IP transfer.