• Title/Summary/Keyword: PCB reliability test

Search Result 79, Processing Time 0.024 seconds

A Study of the High Reliability in Plastic BGA Solder Joints (플라스틱 BGA 솔더접합부의 고신뢰성에 관한 연구)

  • Kim, Kyung-Seob;Shin, Young-Eui;Lee, Hyuk
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1999
  • The increase in high speed, multi-function and high I/O pin semiconductor devices highly demands high pin count, very thin, and high density packages. BGA is one of the solutions, but the package has demerits in package reliability, surface mounting problems due to the PCB warpage and solder joint crack related with TCE mismatch between the materials. On this study to verify the thermal fatigue lifetime of the solder joint FEM and experiments were performed after surface mounting BGA with different solder composition and reliability conditions. FEM showed optimum composition of Ag3.2-Sn96.5 and under the composition minimum creep deformation of the solder joint was calculated, and the thermal fatigue lifetime was improved. In view of temperature cycle condition, the conditions of $-65^{\circ}C$to $150^{\circ}C$ showed minimum lifetime and t was 1/3 of $0^{\circ}C$ to $125^{\circ}C$ condition. Test board was prepared and solder joint crack was verified. Until 1000cycle on soder joint crack was observed.

  • PDF

Experimental Assessment of PBGA Packaging Reliability under Strong Random Vibrations (강력한 임의진동 하에서 PBGA 패키지의 실험적 신뢰성 검증)

  • Kim, Yeong K.;Hwang, Dosoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.59-62
    • /
    • 2013
  • Experimental analyses on the solder joint reliability of plastic ball grid array under harsh random vibration were presented. The chips were assembled on the daisy chained circuit boards for the test samples preparation, half of which were processed for underfill to investigate the underfill effects on the solder failures. Acceptance and qualification levels were applied for the solder failure tests, and the overall controlled RMS of the power spectrum densities of the steps were 22.7 Grms and 32.1 Grms, respectively. It was found that the samples survived without any solder failure during the tests, demonstrating the robustness of the packaging structure for potential avionics and space applications.

PBGA Packaging Reliability under Satellite Random Vibration (인공위성 임의진동에서의 PBGA 패키징 신뢰성)

  • Lee, Seok-min;Hwang, Do-soon;Kim, Sun Won;Kim, Yeong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.876-882
    • /
    • 2018
  • The purpose of this research is to verify the feasibility of Plastic Ball Grid Array (PBGA), one of the most popular chip packaging types for commercial electronics, under strong random vibration occurred in satellite during launch. Experiment were performed by preparing daisy chained PCB specimen, where large size PBGA were surface mounted, and the PCB was fixed to an aluminum frame which is commonly used to install the electronics parts to satellite. Then the entire sample was fixed to vibration tester. The random vibration power spectrum density employed in the tests were composed of two steps, the acceptance level of 22.7 Grms, and qualification level of 32.1 Grms with given period of time. The test results showed no solder cracks, which provided the strong structural integrity and feasibility evidences of the PBGA packaging to aerospace electronics. Numerical analyses were also performed to calculate the solder stresses and analyze their development mechanism.

Effects of PCB ENIG and OSP Surface Finishes on the Electromigration Reliability and Shear Strength of Sn-3.5Ag PB-Free Solder Bump (PCB의 ENIG와 OSP 표면처리에 따른 Sn-3.5Ag 무연솔더 접합부의 Electromigration 특성 및 전단강도 평가)

  • Kim, Sung-Hyuk;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.166-173
    • /
    • 2014
  • The effects of printed circuit board electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the electromigration reliability and shear strength of Sn-3.5Ag Pb-free solder bump were systematically investigated. In-situ annealing tests were performed in a scanning electron microscope chamber at 130, 150, and $170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). Electromigration lifetime and failure modes were investigated at $150^{\circ}C$ and $1.5{\times}10^5A/cm^2$, while ball shear tests and failure mode analysis were conducted under the high-speed conditions from 10 mm/s to 3000 mm/s. The activation energy of ENIG and OSP surface finishes during annealing were evaluated as 0.84 eV and 0.94 eV, respectively. The solder bumps with ENIG surface finish showed longer electromigration lifetime than OSP surface finish. Shear strengths between ENIG and OSP were similar, and the shear energies decreased with increasing shear speed. Failure analysis showed that electrical and mechanical reliabilities were very closely related to the interfacial IMC stabilities.

A Study on Developing of Soldering Flux (납땜 플럭스 개발에 관한 연구)

  • 이통영
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2000
  • Flux, essentially used in soldering process of PCB (Printed Circuit Board) in electronics industry, contains IPA (Isopropyl alcohol) and methanol, which are highly inflammable and explosive. Hazard Chemical Controlling Law classified methanol as toxic material and Environmental Law classified methanol as VOC (Volatile Organic Compound). So there have been pressing needs of developing substitutes for the existing Flux. New solvent which is non-flammable and main component is DCP having same specific character of the existing Flux. It's been combirated with proper composition ratio adding stabilizer. As a result, it relieved working Environment Allowance thickness 200 ppm to 470 ppm, chance of not been soldered 0.083% to 0%, spread 85% to 87%, power saving resistance 1.0$\times$$10^{12}$$\Omega$ to 6.9$\times$$10^{12}$$\Omega$, which means a lot better than the existing Flux. Therefore, Flux confirmed the chance of improving productivity, safety, environment safety and quality. Also, Flux got a satisfied result after product quality test and product reliability test.

  • PDF

A study of joint properties of Sn-Cu-(X)Al(Si) middle-temperature solder for automotive electronics modules (자동차 전장부품을 위한 Sn-0.5Cu-(X)Al(Si) 중온 솔더의 접합특성 연구)

  • Yu, Dong-Yurl;Ko, Yong-Ho;Bang, Junghwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Joint properties of electric control unit (ECU) module using Sn-Cu-(X)Al(Si) lead-free solder alloy were investigated for automotive electronics module. In this study, Sn-0.5Cu-0.01Al(Si) and Sn-0.5Cu-0.03Al(Si) (wt.%) lead-free alloys were fabricated as bar type by doped various weight percentages (0.01 and 0.03 wt.%) of Al(Si) alloy to Sn-0.5Cu. After fabrications of lead-free alloys, the ball-type solder alloys with a diameter of 450 um were made by rolling and punching. The melting temperatures of 0.01Al(Si) and 0.03Al(Si) were 230.2 and $230.8^{\circ}C$, respectively. To evaluation of properties of solder joint, test printed circuit board (PCB) finished with organic solderability perseveration (OSP) on Cu pad. The ball-type solders were attached to test PCB with flux and reflowed for formation of solder joint. The maximum temperature of reflow was $260^{\circ}C$ for 50s above melting temperature. And then, we measured spreadability and shear strength of two Al(Si) solder materials compared to Sn-0.7Cu solder material used in industry. And also, microstructures in solder and intermetallic compounds (IMCs) were observed. Moreover, thickness and grain size of $Cu_6Sn_5$ IMC were measured and then compared with Sn-0.7Cu. With increasing the amounts of Al(Si), the $Cu_6Sn_5$ thickness was decreased. These results show the addition of Al(Si) could suppress IMC growth and improve the reliability of solder joint.

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.

The Study on embedded components high integrated packaging and drop reliability (부품 내장형 고집적 패키징 및 Drop 신뢰성에 관한 연구)

  • Chung, Yeon-Kyung;Park, Se-Hoon;Ha, Sang-Ok;Jun, Byung-Sub;Cha, Jung-Min;Park, Jong-Chul;Kang, Nam-Kee;Jung, Seung-Boo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.315-315
    • /
    • 2010
  • 휴대용 전자 기기는 얇고 가벼우면서 빠른 대용량을 처리하는 속도와 다기능이 필요한 추세로 가고 있다. 기기 크기가 작아짐에 따라서 내장 되는 칩 또한 소형화, 고집적화, 고성능화가 요구되므로 이에 상응하는 발전된 패키징 기술이 필요하게 되었고, 이에 대응하기위해서 embedded components device 패키징 기술이 필요로 하게 되었다. 본 연구에서는 $21{\Omega}$ 의 저항 값을 갖는 1005 수동 소자를 prepreg를 이용하여 PCB기판에 내장 한 후 micro via를 이용하여 무전해 구리 도금으로 전기적인 연결을 하여 기판을 제작하였다. 제작되어진 기판으로 Reflow, Aging 테스트 후 칩과 계면간의 금속화합물 반응을 관찰하였다. 또한 Reflow외 시효처리를 끝마친 기판을 사용하여 drop test를 실시한 후 fail 발생 시 저항 값의 변화와 접합부의 미세조직을 관찰하였다.

  • PDF

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF

The Effect of Insulating Material on WLCSP Reliability with Various Solder Ball Layout (솔더볼 배치에 따른 절연층 재료가 WLCSP 신뢰성에 미치는 영향)

  • Kim, Jong-Hoon;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Hong, Joon-Ki;Byun, Kwang-Yoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A major failure mode for wafer level chip size package (WLCSP) is thermo-mechanical fatigue of solder joints. The mechanical strains and stresses generated by the coefficient of thermal expansion (CTE) mismatch between the die and printed circuit board (PCB) are usually the driving force for fatigue crack initiation and propagation to failure. In a WLCSP process peripheral or central bond pads from the die are redistributed into an area away using an insulating polymer layer and a redistribution metal layer, and the insulating polymer layer affects solder joints reliability by absorption of stresses generated by CTE mismatch. In this study, several insulating polymer materials were applied to WLCSP to investigate the effect of insulating material. It was found that the effect of property of insulating material on WLCSP reliability was altered with a solder ball layout of package.

  • PDF