• 제목/요약/키워드: PCB Substrate

검색결과 161건 처리시간 0.025초

Flip Chip Assembly on PCB Substrates with Coined Solder Bumps (코인된 솔더 범프를 형성시킨 PCB 기판을 이용한 플립 칩 접속)

  • 나재웅;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.21-26
    • /
    • 2002
  • Solder flip chip bumping and subsequent coining processes on PCB were investigated to solve the warpage problem of organic substrates for high pin count flip chip assembly by providing good co-planarity. Coining of solder bumps on PCB has been successfully demonstrated using a modified tension/compression tester with height, coining rate and coining temperature variables. It was observed that applied loads as a function of coined height showed three stages as coining deformation : (1) elastic deformation at early stage, (2) linear increase of applied load, and (3) rapid increase of applied load. In order to reduce applied loads for coining solder bumps on PCB, effects of coining process parameters were investigated. Coining loads for solder bump deformation strongly depended on coining rates and coining temperatures. As coining rates decreased and process temperature increased, coining loads decreased. Among the effect of two factors on coining loads, it was found that process temperature had more significant effect to reduce applied coining loads during the coining process. Lower coining loads were needed to prevent substrate damages such as micro-via failure and build-up dielectric layer thickness change during applying loads. For flip chip assembly, 97Pb/Sn flip chip bumped devices were successfully assembled on organic substrates with 37Pb/Sn coined flip chip bumps.

  • PDF

Omnidirectional Collinear Antenna Using for Multi-Layer PCB Structure (다층 PCB 구조를 이용한 전방향성 코리니어 안테나)

  • Jung, Huyk;Suh, Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제22권11호
    • /
    • pp.1133-1136
    • /
    • 2011
  • In this paper, we proposed a collinear antenna with a stripline structure for IEEE 802.11b/g applications in ISM (Industrial, Scientific, Medical) band of 2.4~2.5 GHz, which supplements disadvantages of COCO(Coaxial Collinear) antenna and OMA(Omnidirectional planar Microstrip Antenna). By using the proposed 4-layer substrate, we obtained improved performances and advantages in production compared with the existing antenna. In order to get antenna arrays, the same phase structure is designed by alternatively connecting outer conductor to inner conductor with ${\lambda}$/2 antenna element, and the substrate of FR4 epoxy (${\epsilon}_r$=4.4, tan${\delta}$=0.02) was used for the actual implementation. The maximum gain of about 4.93 dBi was measured, which leaded to a little improved gain of 0.33 dBi in comparison to the existing OMA structure.

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Practical Implementation of Memristor Emulator Circuit on Printed Circuit Board (PCB에 구현한 멤리스터 에뮬레이터 회로 및 응용)

  • Choi, Jun-Myung;Sin, SangHak;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • 제17권3호
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, we implemented memristor emulator circuit on Printed Circuit Board (PCB) and observed the inherent pinched hysteresis characteristic of memristors by measuring the emulator circuit on PCB. The memristor emulator circuit implemented on PCB is composed of simple discrete devices not using any complicated circuit blocks thus we can integrate the memristor emulator circuits in very small layout area on Silicon substrate. The programmable gain amplifier is designed using the proposed memristor emulator circuit and verified that the amplifier's voltage gain can be controlled by programming memristance of the emulator circuit by circuit simulation. Threshold switching is also realized in the proposed emulator circuit thus memristance can remain unchanged when the input voltage applied to the emulator circuit is lower than VREF. The memristor emulator circuit and the programmable gain amplifier using the proposed circuit can be useful in teaching the device operation, functions, characteristics, and applications of memristors to students when thet cannot access to device and fabrication technologies of real memristors.

Efficiency improvement of a DC/DC converter using LTCC substrate

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Park, Junbo;Jun, Chi-Hoon;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.811-819
    • /
    • 2019
  • We propose a substrate with high thermal conductivity, manufactured by the low-temperature co-fired ceramic (LTCC) multilayer circuit process technology, as a new DC/DC converter platform for power electronics applications. We compare the reliability and power conversion efficiency of a converter using the LTCC substrate with the one using a conventional printed circuit board (PCB) substrate, to demonstrate the superior characteristics of the LTCC substrates. The power conversion efficiencies of the LTCC- and PCB-based synchronous buck converters are 95.5% and 94.5%, respectively, while those of nonsynchronous buck converters are 92.5% and 91.3%, respectively, at an output power of 100 W. To verify the reliability of the LTCC-based converter, two types of tests were conducted. Storage temperature tests were conducted at -20 ℃ and 85 ℃ for 100 h each. The variation in efficiency after the tests was less than 0.3%. A working temperature test was conducted for 60 min, and the temperature of the converter was saturated at 58.2 ℃ without a decrease in efficiency. These results demonstrate the applicability of LTCC as a substrate for power conversion systems.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제34권2호
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

The Fabrication and Characterization of Diplexer Substrate with buried 1005 Passive Component Chip in PCB (PCB내 1005 수동소자 내장을 이용한 Diplexer 구현 및 특성 평가)

  • Park, Se-Hoon;Youn, Je-Hyun;Yoo, Chan-Sei;Kim, Pil-Sang;Kang, Nam-Kee;Park, Jong-Chul;Lee, Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제14권2호
    • /
    • pp.41-47
    • /
    • 2007
  • Today lots of investigations on Embedded Passive Technology using materials and chip components have been carried out. We fabricated diplexers with 1005 sized-passives, which were made by burying chips in PCB substrate and surface mounting chip on PCB. 6 passive chips (inductors and capacitors) were used for the frequency divisions of $880\;MHz{\sim}960\;MHz(GSM)$ and $1.71\;GHz{\sim}1.88\;GHz(DCS)$. Two types of diplxer were characterized with Network analyzer. The chip buried diplexer showed extra 5db loss and a little deviation of 0.6GHz at aimed frequency areas, whereas the chip mounted diplexer showed man. 0.86dB loss within GSM field and max. 0.68dB within DCS field respectively. But few degradations were observed after $260^{\circ}C$ for 80min baking and $280^{\circ}C$ for 10sec solder floating.

  • PDF

Specific Biodegradation of Polychlorinated Biphenyls (PCBs) Facilitated by Plant Terpenoids

  • Jung, Kyung-Ja;Eungbin kim;So, Jae-Seong;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.61-66
    • /
    • 2001
  • The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4-dichlorobiphenyl (4,4-DCBp) and 2,2-dichlorobiphenyl (2,2-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders, Pseudomonas ((S)-(-) limonene, p-cymene and $\alpha$-terpinene) whereas Arthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4-DCBp and 2,2-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(-) limonene, p-cymene and $\alpha$-terpinene, could degrade 4,4-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(-) limonene, could also degrade 2,2-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

  • PDF

A Study on the Design of Dual-Band Small Pacth Antenna using T-shaped Feeder and Spiral Structure (T자형 급전선과 스파이럴구조를 이용한 이중대역 소형패치 안테나 설계에 관한 연구)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제22권4호
    • /
    • pp.35-40
    • /
    • 2022
  • This paper proposes an antenna that is located outside the PCB substrate of an electronic product to enable wireless communication in the ISM band. The PCB designed the T-shaped OPEN-STUB power supply line to be miniaturized so that it does not interfere with parts or interfere with design. The characteristics of the antenna were confirmed in the 2.4GHz and 5.8GHz bands using a T-shaped stub feeder and a spiral structure. The size of the antenna is 5mm in width × 6.5mm in length, and the thickness of the PCB is 1.2T. As a result of measurement of the manufactured antenna, it was possible to obtain a return loss of -10dB or more at 2.4GHz and 5.8GHz. In the E-plane, the gain was -4.45 dBi, and in the H-plane, the gain was -1.05 dBi. Therefore, the proposed small antenna for wireless communication showed excellent performance.