• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.032 seconds

Pattern Recognition of the Herbal Drug, Magnoliae Flos According to their Essential Oil Components

  • Jeong, Eun-Sook;Choi, Kyu-Yeol;Kim, Sun-Chun;Son, In-Seop;Cho, Hwang-Eui;Ahn, Su-Youn;Woo, Mi-Hee;Hong, Jin-Tae;Moon, Dong-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1121-1126
    • /
    • 2009
  • This paper describes a pattern recognition method of Magnoliae flos based on a gas chromatographic/mass spectrometric (GC/MS) analysis of the essential oil components. The botanical drug is mainly comprised of the four magnolia species (M. denudata, M. biondii, M. kobus, and M. liliflora) in Korea, although some other species are also being dealt with the drug. The GC/MS separation of the volatile components, which was extracted by the simultaneous distillation and extraction (SDE), was performed on a carbowax column (supelcowax 10; 30 m{\time}0.25 mm{\time}0.25{\mu}m$) using temperature programming. Variance in the retention times for all peaks of interests was within RSD 2% for repeated analyses (n = 9). Of the 74 essential oil components identified from the magnolia species, approximately 10 major components, which is $\alpha$-pinene, $\beta$-pinene, sabinene, myrcene, d-limonene, eucarlyptol (1,8-cineol), $\gamma$-terpinene, p-cymene, linalool, $\alpha$-terpineol, were commonly present in the four species. For statistical analysis, the original dataset was reduced to the 13 variables by Fisher criterion and factor analysis (FA). The essential oil patterns were processed by means of the multivariate statistical analysis including hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). All samples were divided into four groups with three principal components by PCA and according to the plant origins by HCA. Thirty-three samples (23 training sets and 10 test samples to be assessed) were correctly classified into the four groups predicted by PCA. This method would provide a practical strategy for assessing the authenticity or quality of the well-known herbal drug, Magnoliae flos.

Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering (Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지)

  • Lee, Jaese;Kim, Woohyeok;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1373-1387
    • /
    • 2021
  • Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.

Straight Line Detection Using PCA and Hough Transform (주성분 분석과 허프 변환을 이용한 직선 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.227-232
    • /
    • 2018
  • In a Hough transform that is a representative algorithm for the straight line detection, a great number of edge pixels generated from noisy or complex images cause enormous amount of computation and pseudo straight lines. This paper proposes a two step straight line detection algorithm to improve the conventional Hough transform. In the first step, the proposed algorithm divides an image into non-overlapping blocks and detects the information related to the straight line of the edge pixels in the block using a principal component analysis (PCA). In the second step, it detects the straight lines by performing the Hough transform limited slope area to the pixels associated with the straight line. Simulation results show that the proposed algorithm reduces average of ${\rho}$ computation by 94.6% and prevents the pseudo straight lines although some additional computation is needed.

Volatile Organic Gas Recognition Using Conducting Polymer Sensor array (전도성 고분자 센서 어레이를 이용한 휘발성 유기 화합물 가스 인식)

  • Lee, Kyung-Mun;Joo, Byung-Su;Yu, Joon-Boo;Hwang, Ha-Ryong;Lee, Byung-Soo;Lee, Duk-Dong;Byun, Hyung-Gi;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.286-293
    • /
    • 2002
  • We fabricated gas recognition system using conducting polymer sensor array for recognizing and analyzing VOCs(Volatile Organic Compounds) gases. The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect VOCs. The multi-dimensional sensor signals obtained from the sensor array were analyzed using PCA(principal component analysis) technique and RBF(radial basis function) Network. Throughout the experimental trails, we confirmed that RBF Network is effective than PCA technique in identifying VOCs.

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Jeon, Pil-Han;Park, Chan-Jun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

Utilizing UPCA and SPCA in Unsupervised Classification Using Landsat TM data

  • Lee, Byung-Gul;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.167-170
    • /
    • 2003
  • 본 연구는 무감독영상해석(Unsupervised Classification)에서 주성분 분석법(Principal Component Analysis)의 응용성을 연구하기 위하여, 주성분 분석법을 K-means, ISODATA 두가지 무감독분류법에 적용하였다. 적용대상지역은 제주도이다. 본 연구에서 주성분 분석 방법중에서 비정규형 주성분 분석방법 (Unstandardized PCA)과 정규형 주성분 분석방법(Standardized PCA) 두가지 경우로 나누어서 각각 연구하였다. 이를 위하여 제주도의 Landsat TM영상과 국토연구원에서 조사한 제주도 식생분류 조사자료와 현장조사 자료 그리고 1/25,000 수치지도를 이용하였다. 그리고 분석된 자료의 정확도를 평가하기 위하여 오차행렬(Error Matrix)을 도입하여 계산하였다. 우선 비정규형 주성분 분석법으로 구한 주성분 영상과 Landsat TM 원래 영상을 오차행렬을 이용하여 제주도의 식생 분류에 각각 적용하였다. 그 결과, K-means 무감독분류법에서는 Landsat TM 자료를 직접 이용한 경우에는 바다와 육상의 분류가 잘 되지 않았으며, 또한 전반적인 영상분류결과가 관측치와 많은 차이를 보였다. 그러나, 주성분 분석법으로 계산된 주성분 영상으로 K-means방법으로 분류 한 결과는 관측치와 잘 일치를 하였다. ISODATA의 경우, Landsat TM 원래영상을 계산하면, K-means으로 분류한 결과보다는 좋은 값을 나타냈으나, 주성분 분석법으로 구한 영상의 계산결과와 비교하면, 주성분 영상으로 구한 분류결과의 정확도가 약 15%정도 높게 나타났다. 정규형 주성분 분석법의 경우를 보면 K-means에서는 Landsat TM원래 자료보다 우수한 결과를 보여주었으나, 비정규형 주성분 분석법으로 계산된 결과보다는 정확도가 다소 떨어지는 단점이 있었고, ISODATA의 경우도 Landsat TM원래 자료보다 약 7%정도의 높은 정확도를 보였으나, 비정규형 영상보다는 약8%정도 낮은 정확도를 보였다. 본 연구에서 주성분 분석법으로 계산된 결과에서 주목되는 것은, 주성분 분석법으로 구한 주성분 영상은 분류방법(K-means, ISODATA, artificial neural networks)에 따라 분류된 결과값이 비슷하게 나타난 반면, Landsat TM원래 자료는 분류방법에 따라 결과값이 많은 차이를 보여 주었다. 그리고 주성분 분석 방법 중에서도 비정규형 주성분 분석법(Unstandardized PCA)이 정규형 주성분 분석법(Standardized PCA)보다 영상분석에서 더 좋은 결과를 보여주는 것으로 나타났다.

  • PDF

Spectroscopic Characterization of Wood Surface Treated by Low-Temperature Heating (저온 열처리 목재 표면의 분광학적 특성)

  • Kim, Kang-Jae;Nah, Gi-Baek;Ryu, Ji-Ae;Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.285-296
    • /
    • 2018
  • As a study for the verification of heat treated wood according to ISPM No. 15, the spectroscopic characteristics of the heat treated wood surface were analyzed. Various functional groups were observed on the IR spectrum, but it was difficult to find any particular difference between wood species, heat treatment time and storage period. HBI (hydrogen-bonding intensity) shows the change of the heat treated wood according to the storage time, but the change of wood with the heat treatment time was hard to be observed. On the PCA score plot, however, it was possible to sort the wood according to the heat treatment time of 60 minutes or 90 minutes in the species. The standards for classification of heat-treated wood in PCA were aromatic rings in lignin and C-H bending in cellulose, and these components were able to classify heat-treated wood by ISPM No. 15.

Comparison of Different Methods to Merge IRS-1C PAN and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 종합방법 비교분석)

  • 안기원;서두천
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.149-164
    • /
    • 1998
  • The main object of this study was to prove the effectiveness of different merging methods by using the high resolution IRS(Indian Remote Sensing Satellite)-1C panchromatic data and the multispectral Landsat TM data. The five methods used to merging the information contents of each of the satellite data were the intensity-hue-saturation(IHS), principal component analysis(PCA), high pass filter(HPF), ratio enhancement method and look-up-table(LUT) procedures. Two measures are used to evaluate the merging method. These measures include visual inspection and comparisons of the mean, standard deviation and root mean square error between merged image and original image data values of each band. The ratio enhancement method was well preserved the spectral characteristics of the data. From visual inspection, PCA method provide the best result, HPF next, ratio enhancement, IHS and LUT method the worst for the preservation of spatial resolution.