This paper describes a pattern recognition method of Magnoliae flos based on a gas chromatographic/mass spectrometric (GC/MS) analysis of the essential oil components. The botanical drug is mainly comprised of the four magnolia species (M. denudata, M. biondii, M. kobus, and M. liliflora) in Korea, although some other species are also being dealt with the drug. The GC/MS separation of the volatile components, which was extracted by the simultaneous distillation and extraction (SDE), was performed on a carbowax column (supelcowax 10; 30 m{\time}0.25 mm{\time}0.25{\mu}m$) using temperature programming. Variance in the retention times for all peaks of interests was within RSD 2% for repeated analyses (n = 9). Of the 74 essential oil components identified from the magnolia species, approximately 10 major components, which is $\alpha$-pinene, $\beta$-pinene, sabinene, myrcene, d-limonene, eucarlyptol (1,8-cineol), $\gamma$-terpinene, p-cymene, linalool, $\alpha$-terpineol, were commonly present in the four species. For statistical analysis, the original dataset was reduced to the 13 variables by Fisher criterion and factor analysis (FA). The essential oil patterns were processed by means of the multivariate statistical analysis including hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). All samples were divided into four groups with three principal components by PCA and according to the plant origins by HCA. Thirty-three samples (23 training sets and 10 test samples to be assessed) were correctly classified into the four groups predicted by PCA. This method would provide a practical strategy for assessing the authenticity or quality of the well-known herbal drug, Magnoliae flos.
Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.2
/
pp.227-232
/
2018
In a Hough transform that is a representative algorithm for the straight line detection, a great number of edge pixels generated from noisy or complex images cause enormous amount of computation and pseudo straight lines. This paper proposes a two step straight line detection algorithm to improve the conventional Hough transform. In the first step, the proposed algorithm divides an image into non-overlapping blocks and detects the information related to the straight line of the edge pixels in the block using a principal component analysis (PCA). In the second step, it detects the straight lines by performing the Hough transform limited slope area to the pixels associated with the straight line. Simulation results show that the proposed algorithm reduces average of ${\rho}$ computation by 94.6% and prevents the pseudo straight lines although some additional computation is needed.
We fabricated gas recognition system using conducting polymer sensor array for recognizing and analyzing VOCs(Volatile Organic Compounds) gases. The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect VOCs. The multi-dimensional sensor signals obtained from the sensor array were analyzed using PCA(principal component analysis) technique and RBF(radial basis function) Network. Throughout the experimental trails, we confirmed that RBF Network is effective than PCA technique in identifying VOCs.
Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
Journal of Electrical Engineering and Technology
/
v.12
no.6
/
pp.2388-2398
/
2017
In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.
A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.4
/
pp.682-691
/
2017
In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2003.04a
/
pp.167-170
/
2003
본 연구는 무감독영상해석(Unsupervised Classification)에서 주성분 분석법(Principal Component Analysis)의 응용성을 연구하기 위하여, 주성분 분석법을 K-means, ISODATA 두가지 무감독분류법에 적용하였다. 적용대상지역은 제주도이다. 본 연구에서 주성분 분석 방법중에서 비정규형 주성분 분석방법 (Unstandardized PCA)과 정규형 주성분 분석방법(Standardized PCA) 두가지 경우로 나누어서 각각 연구하였다. 이를 위하여 제주도의 Landsat TM영상과 국토연구원에서 조사한 제주도 식생분류 조사자료와 현장조사 자료 그리고 1/25,000 수치지도를 이용하였다. 그리고 분석된 자료의 정확도를 평가하기 위하여 오차행렬(Error Matrix)을 도입하여 계산하였다. 우선 비정규형 주성분 분석법으로 구한 주성분 영상과 Landsat TM 원래 영상을 오차행렬을 이용하여 제주도의 식생 분류에 각각 적용하였다. 그 결과, K-means 무감독분류법에서는 Landsat TM 자료를 직접 이용한 경우에는 바다와 육상의 분류가 잘 되지 않았으며, 또한 전반적인 영상분류결과가 관측치와 많은 차이를 보였다. 그러나, 주성분 분석법으로 계산된 주성분 영상으로 K-means방법으로 분류 한 결과는 관측치와 잘 일치를 하였다. ISODATA의 경우, Landsat TM 원래영상을 계산하면, K-means으로 분류한 결과보다는 좋은 값을 나타냈으나, 주성분 분석법으로 구한 영상의 계산결과와 비교하면, 주성분 영상으로 구한 분류결과의 정확도가 약 15%정도 높게 나타났다. 정규형 주성분 분석법의 경우를 보면 K-means에서는 Landsat TM원래 자료보다 우수한 결과를 보여주었으나, 비정규형 주성분 분석법으로 계산된 결과보다는 정확도가 다소 떨어지는 단점이 있었고, ISODATA의 경우도 Landsat TM원래 자료보다 약 7%정도의 높은 정확도를 보였으나, 비정규형 영상보다는 약8%정도 낮은 정확도를 보였다. 본 연구에서 주성분 분석법으로 계산된 결과에서 주목되는 것은, 주성분 분석법으로 구한 주성분 영상은 분류방법(K-means, ISODATA, artificial neural networks)에 따라 분류된 결과값이 비슷하게 나타난 반면, Landsat TM원래 자료는 분류방법에 따라 결과값이 많은 차이를 보여 주었다. 그리고 주성분 분석 방법 중에서도 비정규형 주성분 분석법(Unstandardized PCA)이 정규형 주성분 분석법(Standardized PCA)보다 영상분석에서 더 좋은 결과를 보여주는 것으로 나타났다.
Kim, Kang-Jae;Nah, Gi-Baek;Ryu, Ji-Ae;Eom, Tae-Jin
Journal of the Korean Wood Science and Technology
/
v.46
no.3
/
pp.285-296
/
2018
As a study for the verification of heat treated wood according to ISPM No. 15, the spectroscopic characteristics of the heat treated wood surface were analyzed. Various functional groups were observed on the IR spectrum, but it was difficult to find any particular difference between wood species, heat treatment time and storage period. HBI (hydrogen-bonding intensity) shows the change of the heat treated wood according to the storage time, but the change of wood with the heat treatment time was hard to be observed. On the PCA score plot, however, it was possible to sort the wood according to the heat treatment time of 60 minutes or 90 minutes in the species. The standards for classification of heat-treated wood in PCA were aromatic rings in lignin and C-H bending in cellulose, and these components were able to classify heat-treated wood by ISPM No. 15.
The main object of this study was to prove the effectiveness of different merging methods by using the high resolution IRS(Indian Remote Sensing Satellite)-1C panchromatic data and the multispectral Landsat TM data. The five methods used to merging the information contents of each of the satellite data were the intensity-hue-saturation(IHS), principal component analysis(PCA), high pass filter(HPF), ratio enhancement method and look-up-table(LUT) procedures. Two measures are used to evaluate the merging method. These measures include visual inspection and comparisons of the mean, standard deviation and root mean square error between merged image and original image data values of each band. The ratio enhancement method was well preserved the spectral characteristics of the data. From visual inspection, PCA method provide the best result, HPF next, ratio enhancement, IHS and LUT method the worst for the preservation of spatial resolution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.