• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.03 seconds

Probabilistic K-nearest neighbor classifier for detection of malware in android mobile (안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기)

  • Kang, Seungjun;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.817-827
    • /
    • 2015
  • In this modern society, people are having a close relationship with smartphone. This makes easier for hackers to gain the user's information by installing the malware in the user's smartphone without the user's authority. This kind of action are threats to the user's privacy. The malware characteristics are different to the general applications. It requires the user's authority. In this paper, we proposed a new classification method of user requirements method by each application using the Principle Component Analysis(PCA) and Probabilistic K-Nearest Neighbor(PKNN) methods. The combination of those method outputs the improved result to classify between malware and general applications. By using the K-fold Cross Validation, the measurement precision of PKNN is improved compare to the previous K-Nearest Neighbor(KNN). The classification which difficult to solve by KNN also can be solve by PKNN with optimizing the discovering the parameter k and ${\beta}$. Also the sample that has being use in this experiment is based on the Contagio.

A Study on Blood Flow Measurement Method using Independent Component Analysis (독립성분분석을 이용한 혈류 속도 측정 방법에 관한 연구)

  • Cho, Seog-Bin;Lim, Dong-Seok;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.10-17
    • /
    • 2007
  • The echo signal on ultrasonic transducer is a mixed signal from tissues, blood vessel walls, blood cells and noise. In this mixed-signal, the signal reflected from tissues and blood vessel walls is called clutter. It is necessary to extract pure blood signal from this mixed-signal, when measuring blood flow velocity with medical ultrasonic system The quality of measured blood flow velocity is highly dependent on sufficient attenuation of the clutter signals. In this paper, we suggest a clutter rejection method using ICA For simulation, the echo signals are generated by Field n ultrasonic simulation program In this echo signals, independent signals are separated by using ICA Then the blood signal is obtained from the separated signals. Blood flow velocity is measured by 2D autocorrelation method. We compare ICA clutter rejection method with PCA-based eigen filter method using both measured blood flow velocity profiles by 2D autocorrelation. In simulation results, ICA clutter rejection method can be better applied measuring blood flow velocity in noisy echo signals.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Realtime Facial Expression Control of 3D Avatar by PCA Projection of Motion Data (모션 데이터의 PCA투영에 의한 3차원 아바타의 실시간 표정 제어)

  • Kim Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1478-1484
    • /
    • 2004
  • This paper presents a method that controls facial expression in realtime of 3D avatar by having the user select a sequence of facial expressions in the space of facial expressions. The space of expression is created from about 2400 frames of facial expressions. To represent the state of each expression, we use the distance matrix that represents the distances between pairs of feature points on the face. The set of distance matrices is used as the space of expressions. Facial expression of 3D avatar is controled in real time as the user navigates the space. To help this process, we visualized the space of expressions in 2D space by using the Principal Component Analysis(PCA) projection. To see how effective this system is, we had users control facial expressions of 3D avatar by using the system. This paper evaluates the results.

  • PDF

Study on The Confidence Level of PCA-based Face Recognition Under Variable illumination Condition (조명 변화 환경에서 PCA 기반 얼굴인식 알고리즘의 신뢰도에 대한 연구)

  • Cho, Hyun-Jong;Kang, Min-Koo;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • This paper studies on the recognition rate change with respect to illumination variance and the confidence level of PCA(Principal Component Analysis) based face recognition by measuring the cumulative match score of CMC(Cumulative Match Characteristic). We studied on the confidence level of the algorithm under illumination changes and selection of training images not only by testing multiple training images per person with illumination variance and single training image and but also by changing the illumination conditions of testing images. The experiment shows that the recognition rate drops for multiple training image case compared to single training image case. We, however, confirmed the confidence level of the algorithm under illumination variance by the fact that the training image which corresponds to the identity of testing image belongs to upper similarity lists regardless of illumination changes and the number of training images.

Assessment and spatial variation of water quality using statistical techniques: Case study of Nakdong river, Korea

  • Kim, Shin
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.245-257
    • /
    • 2022
  • Water quality characteristics and their spatial variations in the Nakdong River were statistically analyzed by multivariate techniques including correlation analysis, CA, and FA/PCA based on water quality parameters for 17 sites over 2017-2019, yielding PI values for primary factors. Site 10 indicated the highest parameter concentrations, and results of pearson's correlation analysis suggest that non-biodegradable organic matter had been distributed on the site. Five clusters were identified in order of descending pollution levels: I (Ib > Ia) > II (IIa > IIb) > III. Spatial variations started from sub-cluster Ib in which Daegu city and Geumho-river are joined. T-P, PO4-P, SS, COD, and TOC corresponded to VF 1 and 2, which were found to be principal components with strong influence on water quality. Sub-cluster Ib was strongly influenced by NO3-N and T-N compared to other clusters. According to the PIs, water quality pollution deteriorated due to non-biodegradable organic matter, nitrogen- and phosphorus-based nutrient salts in the middle and lower reaches, illustrating worsening water pollution due to inflows of anthropogenic sources on the Geumho-river, i.e., sewage and wastewater, discharged from Site 10, at which there is a concentration of urban, agricultural, and industrial areas.

Rectified Subspace Analysis of Dynamic Positron Emission Tomography (정류된 부공간 해석을 이용한 PET 영상 분석)

  • Kim, Sangki;Park, Seungjin;Lee, Jaesung;Lee, Dongsoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.301-303
    • /
    • 2002
  • Subspace analysis is a popular method for multivariate data analysis and is closely related to factor analysis and principal component analysis (PCA). In the context of image processing (especially positron emission tomography), all data points are nonnegative and it is expected that both basis images and factors are nonnegative in order to obtain reasonable result. In this paper We present a sequential EM algorithm for rectified subspace analysis (subspace in nonnegativity constraint) and apply it to dynamic PET image analysis. Experimental results show that our proposed method is useful in dynamic PET image analysis.

  • PDF

Analysis of Protein and Moisture Contents in Pea(Pisum sativum L. Using Near-Infrared Reflectance Spectroscopy

  • Jung, Chan-Sik;Kim, Byung-Joo;Kwon, Yil-Chan;Han, Won-Young;Kwack, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.101-104
    • /
    • 1998
  • This study was conducted to establish a rapid analysis method for determining protein and moisture contents of pea. Ninety and eighty pea (Pisum sativum L.) lines were analyzed to determine protein and moisture contents, respectively using near-infrared reflectance spectroscopy. Simple correlations (${\gamma}$) of protein content in a ground sample and an intact grain sample by an automatic regression method were 0.978 and 0.910, respectively. Simple correlations by partial least square regression/principal component analysis (PLS/PCA) methods were 0.982 and 0.925, respectively. Standard error of performance (SEP) in protein content was the lowest value, 0.446 in ground sample by PLS/PCA methods. Simple correlation of moisture content was the highest at 0.871 in ground samples. when using a standard regression method. Accuracy for the moisture content was slightly lower than for protein content. It was concluded that the NIRS method would be applicable only for rapid determination of protein content in pea.

  • PDF

Analysis of COPD Patient's Exhaled Breath Using Sensor Array (센서 어레이를 사용한 COPD 환자의 호기분석)

  • Yu, Joon-Boo;Lee, Shin-Yup;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-222
    • /
    • 2013
  • The exhaled breath contains gases generated from human body. When disease occurs in the body, exhaled breath may include gas components released from disease metabolism. If we can find specific elements through analysis of the exhaled gases, this approach is an effective way to diagnose the disease. The lung function has a close relationship with exhalation. Exhaled gases from COPD (Chronic Obstructive Pulmonary Disease) patients can be analyzed by gas chromatography-mass spectroscopy (GC-MS) and a gas sensor system. The exhaled breath for healthy person and COPD patients had different components. Significantly more benzendicarboxylic acid was detected from COPD patients than in healthy persons. In addition, patients had a variety of decane. Phosphorous compounds with different isomers were detected from patients. The results obtained by gas sensor system were processed by PCA (Principal Component Analysis). The PCA results revealed distinct difference between the patients and healthy people.

Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm (영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2013
  • The surveillance system has been developed to be intelligent which can judge and cope by itself using human recognition technique. The existing face recognition is excellent at a short distance but recognition rate is reduced at a long distance. In this paper, we analyze the performance of face recognition according to interpolation and face recognition algorithm in face recognition using the multiple distance face images to training. we use the nearest neighbor, bilinear, bicubic, Lanczos3 interpolations to interpolate face image and PCA and LDA to face recognition. The experimental results show that LDA-based face recognition with bilinear interpolation provides performance in face recognition.