A Study on Blood Flow Measurement Method using Independent Component Analysis

독립성분분석을 이용한 혈류 속도 측정 방법에 관한 연구

  • Published : 2007.03.25

Abstract

The echo signal on ultrasonic transducer is a mixed signal from tissues, blood vessel walls, blood cells and noise. In this mixed-signal, the signal reflected from tissues and blood vessel walls is called clutter. It is necessary to extract pure blood signal from this mixed-signal, when measuring blood flow velocity with medical ultrasonic system The quality of measured blood flow velocity is highly dependent on sufficient attenuation of the clutter signals. In this paper, we suggest a clutter rejection method using ICA For simulation, the echo signals are generated by Field n ultrasonic simulation program In this echo signals, independent signals are separated by using ICA Then the blood signal is obtained from the separated signals. Blood flow velocity is measured by 2D autocorrelation method. We compare ICA clutter rejection method with PCA-based eigen filter method using both measured blood flow velocity profiles by 2D autocorrelation. In simulation results, ICA clutter rejection method can be better applied measuring blood flow velocity in noisy echo signals.

의료용 초음파 시스템으로 혈류 속도를 측정할 때, 순수한 혈류 신호의 검출이 필요하다. 초음파 트랜스듀서를 통해 들어오는 반사 신호는 체세포 조직(tissue), 혈관 벽(blood wall), 적혈구(red blood cell), 잡음(noise) 등이 혼합된 신호이다. 혼합된 신호에서 체세포 조직과 혈관 벽 신호를 클러터(clutter)라고 한다. 본 논문에서는 ICA(independent component analysis)를 적용하여 클러터 신호와 잡음을 효과적으로 제거하는 방법을 제시하였다. Field II 초음파 시뮬레이션 프로그램을 이용하여 초음파 반사 신호를 생성하고, ICA를 사용하여 각 독립 신호들을 분리, 클러터 신호를 제거하여 혈류 신호를 추출했다. 추출전 혈류신호를 2D 자기상관(autocorrelation) 방법으로 혈류 속도를 측정했다. 그리고 PCA(principal component analysis)방법을 적용한 고유 필터(autocorrelation) 방법으로 클러터를 제거한 결과와 비교하였다. 그 결과 잡음 환경에서의 혈류 속도 측정에 ICA 방법이 우수한 적용 결과를 보였다.

Keywords

References

  1. W.D. Hedrick, D.L. Hykes, D.E. Starchman, Ultrasound physics and instrumentation, Elsevier Mosby, 2005
  2. S. Bjaerum and H. Torp, 'Optimal adaptive clutter filtering in color flow imaging', in Proc. IEEE Ultrasonic Symp., vol. 2, pp. 1223-1226, 1997
  3. C.M. Gallippi, K.R. Nightingale and G.E. Trahey, 'BSS-based filtering of physiological and ARFI-induced tissue and blood motion', Ultrasound in Med. & Biol., vol. 29, no. 11, pp. 1583-1592, 2003 https://doi.org/10.1016/j.ultrasmedbio.2003.07.002
  4. 김영길, '초음파 펄스 도플러 시스템의 stationary canceler에 대한 연구', 의공학회지, 6권, 1호, 1985
  5. S. Bjaerum and H. Torp, 'Clutter filters adapted to tissue motion in ultrasound color flow imaging', IEEE trans, Ultrason., Ferroelect., Freq., Contr., vol. 49, no. 6, pp. 693-704, 2002 https://doi.org/10.1109/TUFFC.2002.1009328
  6. S. Bjaerum, H. Torp and K. Kristoffersen, 'Clutter filters design for ultrasound color flow imaging', IEEE trans, Ultrason., Ferroelect., Freq., Contr., vol. 49, no. 2, 2002
  7. C.M. Gallippi and G.E. Trahey, 'Adaptive clutter filtering via blind signal separation for lateral blood velocity measurement', IEEE Ultrasonics Symp., pp.1517-1521, 2002
  8. A. Hyvarinen, J. Karhunen and E. Oja, Independent component analysis, Wiley interscience, 2001
  9. C.M. Gallippi and G.E. Trahey, 'Complex blind source separation for acoustic radiation force impulse imaging in the peripheral vasculature, in vivo', IEEE Ultrasonics Symp., pp.596-601, 2004
  10. J.A. Jensen, Field II, a program for simulating ultrasound system, http://www.es.oersted.dtu.dk/staff/jaj/field/
  11. T. Loupas, J.T. Powers and R.W. Gill, 'An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the doppler equation by means of a two-dimensional autocorrelation approach', IEEE trans. Ultrason., Ferroelect., Freq., Contr., vol. 42, no. 4, pp. 672-688, 1995 https://doi.org/10.1109/58.393110