• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.039 seconds

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Application of Sensor Fault Detection Scheme Based on AANN to Risk Measurement System (AANN-기반 센서 고장 검출 기법의 방재시스템에의 적용)

  • Kim Sung-Ho;Lee Young-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from risk management system is executed.

Fault diagnosis of wafer transfer robot based on time domain statistics (시간 영역 통계 기반 웨이퍼 이송 로봇의 고장 진단)

  • Hyejin Kim;Subin Hong;Youngdae Lee;Arum Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.663-668
    • /
    • 2024
  • This paper applies statistical analysis methods in the time domain to the fault diagnosis of wafer transfer robots, and proposes a methodology to discern the critical characteristics of vibration and torque signals. Subsequently, principal component analysis (PCA) is applied to diminish the data's dimensionality, followed by the development of a fault diagnosis algorithm utilizing Euclidean distance and Hotelling's T-square statistics. The algorithm establishes decision boundaries to categorize failure states based on the observed data. Our findings indicate that data classification incorporating velocity parameters enhances diagnostic accuracy. This approach serves to enhance the precision and efficacy of fault diagnosis.

Comparison of 12 Isoflavone Profiles of Soybean (Glycine max (L.) Merrill) Seed Sprouts from Three Different Countries

  • Park, Soo-Yun;Kim, Jae Kwang;Kim, Eun-Hye;Kim, Seung-Hyun;Prabakaran, Mayakrishnan;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.360-377
    • /
    • 2018
  • The levels of 12 isoflavones were measured in soybean (Glycine max (L.) Merrill) sprouts of 68 genetic varieties from three countries (China, Japan, and Korea). The isoflavone profile differences were analyzed using data mining methods. A principal component analysis (PCA) revealed that the CSRV021 variety was separated from the others by the first two principal components. This variety appears to be most suited for functional food production due to its high isoflavone levels. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that there are meaningful isoflavone compositional differences in samples that have different countries of origin. Hierarchical clustering analysis (HCA) of these phytochemicals resulted in clusters derived from closely related biochemical pathways. These results indicate the usefulness of metabolite profiling combined with chemometrics as a tool for assessing the quality of foods and identifying metabolic links in biological systems.

Signal-based Fault Diagnosis Algorithm of Control Surfaces of Small Fixed-wing Aircraft (소형 고정익기의 신호기반 조종면 고장진단 알고리즘)

  • Kim, Jihwan;Goo, Yunsung;Lee, Hyeongcheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1040-1047
    • /
    • 2012
  • This paper presents a fault diagnosis algorithm of control surfaces of small fixed-wing aircraft to reduce maintenance cost or to improve repair efficiency by estimation of fault occurrence or part replacement periods. The proposed fault diagnosis algorithm consists of ANPSD (Averaged Normalized Power Spectral Density), PCA (Principle Component Analysis), and GC (Geometric Classifier). ANPSD is used for frequency-domain vibration testing. PCA has advantage to extract compressed information from ANPSD. GC has good properties to minimize errors of the fault detection and isolation. The algorithm was verified by the accelerometer measurements of the scaled normal and faulty ailerons and the test results show that the algorithm is suitable for the detection and isolation of the control surface faults. This paper also proposes solutions for some kind of implementation problems.

남해연안해역에 있어서 식물플랑크톤 군집의 계절변동 특성과 기초생산 1. 가뭄시 여수해만의 수질환경과 식물색소량 분포특성

  • 윤양호;김성아
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.347-359
    • /
    • 1996
  • A study was carried out on the distribution of chlorophyll a and water quality in the dry season in Yosuhae bay and adjoining sea, Southern Korea, in July of 1994. Concentration of salinity and phosphate were lower in the outer bay than in the inner bay. While nitrate and silicate were higher in the former than in the latter. We were identified with coastal waters of origin from China with the lower salinity in outer bay. The China coastal water was characteristic of high nutrients and phytoplankton biomass, such as chlorophyll a. The principal component analysis-(PCA) on the analytical data proved that high density of phytoplankton biomass , occurred under the condition of low salinity and high concentration of nissoived Inorganic nutrients. It is thought that the thermoharine structure and biological produtions of Yosuhae bay were controlled by the China coastal water in the outer bay.

  • PDF

Source Identification of PM2.5 at the Tokchok Island on the Yellow Sea (황해상 덕적도 PM2.5오염원의 확인)

  • 윤용석;배귀남;김동술;황인조;이승복;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.317-325
    • /
    • 2002
  • An air pollution monitoring station has been operated at Tokchok Island since April 1999 to characterize the background atmosphere in the vicinity of the Yellow Sea. In this study, eight chemical species in PM$_{2.5}$ and three gaseous species were analyzed. A total of 53 samples were collected for the analysis of PM$_{2.5}$ and gaseous species from April, 1999 to April, 2001. The overall mean mass concentration of PM$_{2.5}$ was 20.8 $\mu\textrm{g}$/㎥ and the eight soluble ionic species accounted for about 46.8% of PM$_{2.5}$ mass. Approximately 80% of samples appeared to experience the chloride loss effect. Air pollutant sources of PM$_{2.5}$ measured at Tokchok Island were qualitatively identified by the principal component analysis. It was found that five principal components are secondary aerosol, soil, incineration, phase change of nitrate, and ocean.and ocean.

Variation of Morphological Similarity between Rice Breeding Lines in the Different Fertilizer Levels (시비량에 따른 수도 계통간의 형태적 유사도 변이)

  • 이영만;구자옥
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.375-380
    • /
    • 1985
  • Single linkage dendrograms by Mahalanobis's D$^2$, Q correlation, and distance from Principal Component Analysis, respectively, were made to eight rice breeding lines in the none and high fertilizer levels. The dendrograms in the two fertilizer levels were similar in shape. The shape of dendrograms by D$^2$ and Q correlation were identical and they were very similar in shape to that by PCA in the both fertilizer levels.

  • PDF

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Development of integrated drought index(IDI) using remote sensing data and multivariate model (원격탐사자료와 다변량 통계모형을 활용한 통합가뭄지수 개발)

  • Park, Seo-Yeon;Kim, Jong-Suk;Kim, Tae-Woong;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.359-359
    • /
    • 2020
  • 현재 우리나라의 가뭄감시 정보는 기상학적/농업적/수문학적 가뭄이 별도의 지수로 개발되어 다양한 형태의 정보를 생산·제공되고 있다. 각각의 가뭄 지수들 기준 및 특성에 따라 분석되고 있기 때문에 가뭄전문가의 입장에서는 매우 정밀한 가뭄정보를 제공받는 장점이 있는 반면에, 일반 국민들이 가뭄 정보를 받아들이고 이해하는데 어려움이 있어 이를 한눈에 알아볼 수 있는 통합가뭄지도가 필요하며, 통합가뭄도를 제작하기 위해서는 통합가뭄지수가 개발되어야 한다. 본 연구에서는 원격탐사자료를 활용하여 농업적 가뭄지수인 Agricultural Dry Condition Index (ADCI)와 수문학적 가뭄지수인 Water Budget-based Drought Index (WBDI)를 개발하였으며, 기상학적 가뭄지수인 Standardized Precipitation Index (SPI)를 포함하여 기상-농업-수문학적 가뭄지수를 결합한 통합가뭄지수를 산정하였다. 다양한 가뭄지수를 활용하여 개발되었기 때문에 다변량 통계 모형 중 선형 모형인 Principal Component Analysis (PCA)기법과 비선형 모형인 Kernel Entropy PCA, Kernel PCA를 적용하였다. 또한 과거 가뭄사상을 활용하여 산정된 통합가뭄지수 검증을 위해 과거 가뭄사상에 대한 가뭄 발생시기, 심도, 쇠퇴패턴이 양상 평가 및 Intentionally Biased Bootstrap Resampling (IBBR)을 활용한 지수별 민감도 분석을 통해 통합가뭄지수 적용성 평가를 진행하였다.

  • PDF