• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.027 seconds

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

Quality Inspection of Dented Capsule using Curve Fitting-based Image Segmentation

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.125-130
    • /
    • 2016
  • Automatic quality inspection by computer vision can be applied and give a solution to the pharmaceutical industry field. Pharmaceutical capsule can be easily affected by flaws like dents, cracks, holes, etc. In order to solve the quality inspection problem, it is required computationally efficient image processing technique like thresholding, boundary edge detection and segmentation and some automated systems are available but they are very expensive to use. In this paper, we have developed a dented capsule image processing technique using edge-based image segmentation, TLS(Total Least Squares) curve fitting technique and adopted low cost camera module for capsule image capturing. We have tested and evaluated the accuracy, training and testing time of the classification recognition algorithms like PCA(Principal Component Analysis), ICA(Independent Component Analysis) and SVM(Support Vector Machine) to show the performance. With the result, PCA, ICA has low accuracy, but SVM has good accuracy to use for classifying the dented capsule.

Reduction of Dimension of HMM parameters in MLLR Framework for Speaker Adaptation (화자적응시스템을 위한 MLLR 알고리즘 연산량 감소)

  • Kim Ji Un;Jeong Jae Ho
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.123-126
    • /
    • 2003
  • We discuss how to reduce the number of inverse matrix and its dimensions requested in MLLR framework for speaker adaptation. To find a smaller set of variables with less redundancy, we employ PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible. The amount of additional computation when PCA or ICA is applied is as small as it can be disregarded. The dimension of HMM parameters is reduced to about 1/3 ~ 2/7 dimensions of SI(speaker independent) model parameter with which speech recognition system represents word recognition rate as much as ordinary MLLR framework. If dimension of SI model parameter is n, the amount of computation of inverse matrix in MLLR is proportioned to O($n^4$). So, compared with ordinary MLLR, the amount of total computation requested in speaker adaptation is reduced to about 1/80~1/150.

  • PDF

A Study on Sensory Properties of Backsulgi using Dry Non-Glutinous Rice Flour

  • Park, Young Mi;Yoon, Hye Hyun
    • Culinary science and hospitality research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2014
  • The study explores the sensory properties of Backsulgi prepared with dry non-glutinous rice flour sweetened with various sweeteners(sugar, honey, oligosaccharide, trehalos, erythritol and accesulfame K). Sensory attributes of Backsulgi were evaluated by quantitative descriptive analysis(QDA), PCA and PLSR. The QDA results revealed that the sample sweetened with trehalose showed highest value in dryness, and samples with accesulfame K, honey and erythriol had relatively high levels in moisture and springiness. Principle component analysis (PCA) results showed 78.89 % of the total variation with PC1 (54.92%) and PC2 (23.98%), respectively. The samples with accesulfame K(AF) and honey, which showed high values in moisture level, springiness and sweet taste, showed similar attributes which led to a positive direction of PC1. The correlation between the sensory attributes and consumer acceptance showed that the most important factors for high consumer acceptance were moistness, springiness, sweet taste and sweet flavor. Overall, the samples with accesulfame K(AF) had the closest position in the PLSR results with highest overall consumer satisfaction.

Effective Face Detection Using Principle Component Analysis and Support Vector Machine (주성분 분석과 서포트 백터 머신을 이용한 효과적인 얼굴 검출 시스템)

  • Kang, Byoung-Doo;Kwon, Oh-Hwa;Seong, Chi-Young;Jeon, Jae-Deok;Eom, Jae-Sung;Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1435-1444
    • /
    • 2006
  • We present an effective and real-time face detection method based on Principal Component Analysis(PCA) and Support Vector Machines(SVMs). We extract simple Haar-like features from training images that consist of face and non-face images, reinterpret the features with PCA, and select useful ones from the large number of extracted features. With the selected features, we construct a face detector using an SVM appropriate for binary classification. The face detector is not affected by the size of a training data set in a significant way, so that it showed 90.1 % detection rates with a small quantity of training data. it can process 8 frames per second for $320{\times}240$ pixel images. This is an acceptable processing time for a real-time system.

  • PDF

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

Comparison of results from two analyzing methods for the relation between psychological self-sufficiency and economic self-sufficiency (심리적 자활과 경제적 자활의 관계에 대한 두 가지 분석 방법의 결과 비교)

  • Jung, Hyeyun;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.827-849
    • /
    • 2017
  • Self-sufficiency (SS), which is often used in the social welfare policy of the American welfare system, is an important concept in the field of social welfare and has been studied so much. Among such studies there are also studies on how the employment hope scale and the perceived employment barrier scale, which the psychological SS (PSS) consists of, affect the economic SS (ESS) for low-income job seekers in the United States. These studies are generally conducted using survey data, which are mainly analyzed by structural equation model (SEM) in the field of social science field. In the survey data, the number of measurement variables is generally large and there is a correlation between variables. In such cases, Principal Component Analysis (PCA) can be used. The purpose of this study is to compare the results of SEM and PCA on the survey data mainly dealt with in the social science field. We compare the performance of the two analyzing methods through a small simulation study. We also analyze a real survey data of the ESS and the PSS by using these two methods and compare the results.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

A Study on the Feasibility of Defect Diagnosis using Principal Component Analysis on Aircraft Vibration Data (항공기 진동 데이터 수집 및 주성분 분석을 통한 결함 진단 가능성 연구)

  • Jeong, Sang-gyu;Seo, Young-jin;Kim, Young-mok;Jun, Byung-kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.767-773
    • /
    • 2018
  • In many cases, modern aircraft are equipped with data acquisition system which checks the structural integrity of the aircraft. The analysis of the vibration data collected with the system is generally performed in dependence on a skilled expert who is familiar with aircraft design. Therefore, it is difficult to provide a representative and objective defect identification standard for general users. In this paper, we shows that it is possible to identify the type of maneuvers and faults by using the Principal Component Analysis(PCA) method in the vast vibration data collected during aircraft operation without using the existing aircraft design analysis. We classified the ROK Army aircraft vibration data for maneuvers and faults types, and applied the PCA to the classified data. Our result shows that it is possible to develop an objective maneuver/fault identification method without design analysis for general users.