• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.031 seconds

An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization (뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘)

  • Jung, Young-Jin;Kwon, Ki-Woon;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

Principal Component Analysis of GPS Height Time Series from 14 Permanent GPS Stations Operated by National Geographic Information Institute (주성분분석을 통한 국토지리정보원 14개 GPS 상시관측소 수직좌표 시계열 분석)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • We produced continuous vertical time series of 14 permanent GPS stations operated by National Geographic Information Institute by processing about five years of data. Then we computed the height velocities by using a linear regression fitting of those time series, and did principal component analysis to understand the overall characteristics of the series. The prominent signal obtained as the first mode of PCA results showed an average of 4.2 mm/yr vertical velocity. The values of the first mode eigenvectors were consistent at all sites. Thus, we concluded that all the 14 stations are uplifting nearly at the same velocity for the test period. Then changes of precision before and after removing the first mode signal from the 14 height time series were analyzed. As a result, the precision improved 34.8% on average.

Application of Principal Component Analysis to Shelf-Life Determination of Processed Food (주성분분석을 이용한 식품의 저장중 품질변화 평가)

  • Kim, Jung-Hoan;Yoon, Sang-Gi;Choi, Jun-Bong;Kim, Jae-Cherl;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.703-707
    • /
    • 1995
  • Shelf-life dating of cooked and heat sterilized food was carried out with the use of principal component analysis (PCA). Changes in color, pH, acidity and sensory properties were measured and analyzed during storage at 20, 30 and $40^{\circ}C$. Acceptability of sample was decreased during storage, shelf-life of sample was determined 1.5, 3 and 3 months at 20, 30 and $40^{\circ}C$, respectively. Application of PCA to quality evaluation, principal component (PC) 1 dominated 49.6% of total variation and PC 2 expressed 28.8%. The rate of change of PC 1 to storage time was 1.3 with increasing temperature of $10^{\circ}C$, and close to shelf-life determined by accepability at 20 and $40^{\circ}C$. Therefore, PCA was applicable to evaluate the quality, predict the shelf-life and investigate the quality parameter of food during storage.

  • PDF

Face Recognition using 2D-PCA and Image Partition (2D - PCA와 영상분할을 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.

Flavor Pattern Analysis of Imported Wines Using Electronic Nose System (포도주의 전자코(Electronic Nose)를 이용한 향기 패턴 분석)

  • Kim, Ji-Young;Jang, Ji-Sun;Lee, Ju-Woon;Lee, Ki-Teak
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Flavor is one of the most important factors for determining wine characteristics and quality. Flavor pattern of wines(brewed from America, France, Italy, Chile, and Australia) was analyzed by the electronic nose that is equipped with 12 metal oxide sensors. In the results, the flavor pattern of wines was discriminated according to their origins by the principal component analysis(PCA). Each proportion of the first principal component score in the PCA plot was 94.79%(America), 73.62%(France), 99.06%(Italy), 96.74%(Chile), and 96.53%(Australia), respectively. Consequently, the imported wines could be practically differentiated into one from the other origins by volatile properties, suggesting that electronic nose could be successfully used for easy screening and quality evaluation of wines.

  • PDF

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

Risk Characteristic on Fat-tails of Return Distribution: An Evidence of the Korean Stock Market

  • Eom, Cheoljun
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.4
    • /
    • pp.37-48
    • /
    • 2020
  • Purpose - This study empirically investigates whether the risk property included in fat-tails of return distributions is systematic or unsystematic based on the devised statistical methods. Design/methodology/approach - This study devised empirical designs based on two traditional methods: principal component analysis (PCA) and the testing method of portfolio diversification effect. The fatness of the tails in return distributions is quantitatively measured by statistical probability. Findings - According to the results, the risk property in the fat-tails of return distributions has the economic meanings of eigenvalues having a value greater than 1 through PCA, and also systematic risk that cannot be removed through portfolio diversification. In other words, the fat-tails of return distributions have the properties of the common factors, which may explain the changes of stock returns. Meanwhile, the fatness of the tails in the portfolio return distributions shows the asymmetric relationship of common factors on the tails of return distributions. The negative tail in the portfolio return distribution has a much closer relation with the property of common factors, compared to the positive tail. Research implications or Originality - This empirical evidence may complement the existing studies related to tail risk which is utilized in pricing models as a common factor.

A Double-channel Four-band True Color Night Vision System

  • Jiang, Yunfeng;Wu, Dongsheng;Liu, Jie;Tian, Kuo;Wang, Dan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.608-618
    • /
    • 2022
  • By analyzing the signal-to-noise ratio (SNR) theory of the conventional true color night vision system, we found that the output image SNR is limited by the wavelength range of the system response λ1 and λ2. Therefore, we built a double-channel four-band true color night vision system to expand the system response to improve the output image SNR. In the meantime, we proposed an image fusion method based on principal component analysis (PCA) and nonsubsampled shearlet transform (NSST) to obtain the true color night vision images. Through experiments, a method based on edge extraction of the targets and spatial dimension decorrelation was proposed to calculate the SNR of the obtained images and we calculated the correlation coefficient (CC) between the edge graphs of obtained and reference images. The results showed that the SNR of the images of four scenes obtained by our system were 125.0%, 145.8%, 86.0% and 51.8% higher, respectively, than that of the conventional tri-band system and CC was also higher, which demonstrated that our system can get true color images with better quality.

Face Image Retrieval by Using Eigenface Projection Distance (고유영상 투영거리를 이용한 얼굴영상 검색)

  • Lim, Kil-Taek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.43-51
    • /
    • 2009
  • In this paper, we propose an efficient method of face retrieval by using PCA(principal component analysis) based features. The coarse-to-fine strategy is adopted to sort the retrieval results in the lower dimensional eigenface space and to rearrange candidates at high ranks in higher dimensional eigenface space. To evaluate similarity between a query face image and class reference image, we utilize the PD (projection distance), MQDF(modified quadratic distance function) and MED(minimum Euclidean distance). The experimental results show that the proposed method which rearrange the retrieval results incrementally by using projection distance is efficient for face image retrieval.

A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison (다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교)

  • Hong, Jun-Ho;Oh, Min-Ji;Cho, Yong-Been;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2020
  • This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.