얼굴인식 분야에서 PCA(Principal Component Analysis) 기반 알고리즘은 비교적 간단한 구조와 높은 인식률로 인해 많이 사용되고 있지만 조명이나 얼굴 포즈 변화에 민감하다는 단점이 있다[1]. 이런 단점을 해결하기 위한 노력으로 PCA를 다른 얼굴인식 알고리즘과 결합함으로서 조명과 포즈 변화에 강인한 얼굴인식을 위만 연구가 현재 활발히 진행되고 있다. 본 논문은 PCA기반 얼굴인식에서 조명이 다양하게 변할 때 이에 따른 인식률의 변화와, 인식이 실패했을 경우에 인식 대상이 유사도 상위후보군에 들어가는지를 조사함으로서 PCA기반 알고리즘의 신뢰도를 확인하고자 한다. 이를 위해 Yale Face Database H와 Extended Yale Face Database B를 이용하여 실험한 결과 약 93%의 인식 성공률을 확인했으며, 7%의 인식 실패한 영상의 경우 그 인식하고자 했던 얼굴이 유사도를 기준으로 정렬된 학습 영상에서 상위 후보군에 속한다는 실험 결과를 얻음으로서 PCA기반 얼굴 인식 알고리즘의 신뢰성을 확인할 수 있었다.
Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.6
/
pp.47-53
/
2004
This paper proposes an algerian for determining robot location using appearance-based paradigm. First, this algorithm compresses the image set using Principal Component Analysis(PCA) to obtain a low-dimensional subspace, called the eigenspace, and it makes a manifold that represent a continuous-appearance function. Neural network is employed to estimate the location of the mobile robot from the coefficients of the eigenspace. Then, Kalman filtering scheme is used for the fine estimation of the robot location. The algorithm has been implemented and tested on a mobile robot system. It is shown that the robot location is estimated accurately in several trials.
Journal of Korea Society of Digital Industry and Information Management
/
v.9
no.2
/
pp.111-119
/
2013
Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.
Journal of Institute of Control, Robotics and Systems
/
v.4
no.4
/
pp.506-516
/
1998
In this paper, an algorithm is proposed to detect the malfunction of plasma-etching characteristics using EPD signal trajectories. EPD signal trajectories offer many information on plasma-etching process state, so they must be considered as the most important data sets to predict the wafer states in plasma-etching process. A recent work has shown that EPD signal trajectories were successfully incorporated into process modeling through critical parameter extraction, but this method consumes much effort and time. So Principal component analysis(PCA) can be applied. PCA is the linear transformation algorithm which converts correlated high-dimensional data sets to uncorrelated low-dimensional data sets. Based on this reason neural network model can improve its performance and convergence speed when it uses the features which are extracted from raw EPD signals by PCA. Wafer-state variables, Critical Dimension(CD) and uniformity can be estimated by simulation using neural network model into which EPD signals are incorporated. After CD and uniformity values are predicted, proposed algorithm determines whether malfunction values are produced or not. If malfunction values arise, the etching process is stopped immediately. As a result, through simulation, we can keep the abnormal state of etching process from propagating into the next run. All the procedures of this algorithm can be performed on-line, i.e. wafer to wafer.
lslam, Mohammad Khairul;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
Journal of Advanced Navigation Technology
/
v.12
no.6
/
pp.691-698
/
2008
We present a novel method for face detection and recognition methods applicable to video retrieval. The person matching efficiency largely depends on how robustly faces are detected in the video frames. Face regions are detected in video frames using viola-jones features boosted with the Adaboost algorithm After face detection, PCA (Principal Component Analysis) follows illumination compensation to extract features that are classified by SVM (Support Vector Machine) for person identification. Experimental result shows that the matching efficiency of the ensembled architecture is quit satisfactory.
In this paper, we present an algorithm which recognize hand shape in real time using only image without adhering separate sensor. Hand recognizes using edge orientation histogram, which comes under a constant quantity of 2D appearances because hand shape is intricate. This method suit hand pose recognition in real time because it extracts hand space accurately, has little computation quantity, and is less sensitive to lighting change using color information in complicated background. Method which reduces recognition error using principal component analysis(PCA) method to can recognize through hand shape presentation direction change is explained. A case that hand shape changes by turning 3D also by using this method is possible to recognize. Human interface system manufacture technique, which controls a home electric appliance or game using, suggested method at experience could be applied.
Journal of the Korean Society of Industry Convergence
/
v.8
no.4
/
pp.221-226
/
2005
This paper presents a hybrid method for recognizing the faces by using zero mean and principal component analysis. Zero mean is applied to reduce the 1st order statistics to data nonlinearities. PCA is also used to derive an orthonormal basis which directly leads to dimensionality reduction, and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.85-88
/
2001
Line spectrum pair(LSP) 계수는 양자화 오류에 강하고. 선형 릴간에 효율적이며, 필터의 안정성 판정이 용이하므로 LPC를 대신하여 음성 부호화에 널리 사용되고 있다. 일반적으로 LSP 계수간에는 일정한 상관관계가 나타나고, 이 특성을 이용하면 LSP 계수의 부호량을 줄일 수 있는 가능성이 있나. 본 논문에서는 LSP 계수를 압축하기 위해 principal component analysis(PCA)를 사용한 방법을 제안한다. 제안된 방법에서는 LSP 계수를 Karhunen-Loeve(KL) 변환해 에너지가 집중되는 고유치(eigenvalue)와 고유벡터(eigenvector)를 찾고 값을 양자화 한다. 성능 평가를 위해 2.4kbps MELP(mixed excitation linear prediction)와 8kbps QCELP(qualcumn code excited linear prediction) 음성 부호화기를 사용해 결과 값을 비교했고, 압축률이 증가하는 것을 확인했다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.8
/
pp.1679-1686
/
2009
Odor sensing system that is electronic nose device and its signal processing technique has potential to become a critical service for the people who require tangibility of sense of smell in the multimedia communication. PCA(Principal Component Analysis) have been used for dimensionality reduction and visualization of multivariate measurement data. PCA is good for estimating importance value by variance of data but, have some limitation for getting meaningful representation from odor sensing system. This paper explain about how to analyze the data of odor sensing system by ICA(Independent Component Analysis). We show that ICA can give better result like sensor drift analysis, dimensionality reduction and data representation by improved discrimination.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.