• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.03 seconds

Slope Displacement Data Estimation using Principal Component Analysis (주성분 분석기법을 적용한 사면 계측데이터 평가)

  • Jung, Soo-Jung;Kim, Yong-Soo;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1358-1365
    • /
    • 2010
  • Estimating condition of slope is difficult because of nonlinear time dependency and seasonal effects, which affect the displacements. Displacements and displacement patterns of landslides are highly variable in time and space, and a unique approach cannot be defined to model landslide movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. In the non-parametric approaches, no physical assumptions of target systems are required. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, non-parametric approaches are advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured. Non-parametric approaches are consequently more flexible in modeling than parametric approaches. This method is expected to be a useful tool for the slope management of and alarm systems.

  • PDF

Document Thematic words Extraction using Principal Component Analysis (주성분 분석을 이용한 문서 주제어 추출)

  • Lee, Chang-Beom;Kim, Min-Soo;Lee, Ki-Ho;Lee, Guee-Sang;Park, Hyuk-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.10
    • /
    • pp.747-754
    • /
    • 2002
  • In this paper, We propose a document thematic words extraction by using principal component analysis(PCA) which is one of the multivariate statistical methods. The proposed PCA model understands the flow of words in the document by using an eigenvalue and an eigenvector, and extracts thematic words. The proposed model is estimated by applying to document summarization. Experimental results using newspaper articles show that the proposed model is superior to the model using either word frequency or information retrieval thesaurus. We expect that the Proposed model can be applied to information retrieval , information extraction and document summarization.

Speaker Identification on Various Environments Using an Ensemble of Kernel Principal Component Analysis (커널 주성분 분석의 앙상블을 이용한 다양한 환경에서의 화자 식별)

  • Yang, Il-Ho;Kim, Min-Seok;So, Byung-Min;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.188-196
    • /
    • 2012
  • In this paper, we propose a new approach to speaker identification technique which uses an ensemble of multiple classifiers (speaker identifiers). KPCA (kernel principal component analysis) enhances features for each classifier. To reduce the processing time and memory requirements, we select limited number of samples randomly which are used as estimation set for each KPCA basis. The experimental result shows that the proposed approach gives a higher identification accuracy than GKPCA (greedy kernel principal component analysis).

PCA-Based Feature Reduction for Depth Estimation (깊이 추정을 위한 PCA기반의 특징 축소)

  • Shin, Sung-Sik;Gwun, Ou-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • This paper discusses a method that can enhance the exactness of depth estimation of an image by PCA(Principle Component Analysis) based on feature reduction through learning algorithm. In estimation of the depth of an image, hyphen such as energy of pixels and gradient of them are found, those selves and their relationship are used for depth estimation. In such a case, many features are obtained by various filter operations. If all of the obtained features are equally used without considering their contribution for depth estimation, The efficiency of depth estimation goes down. This paper proposes a method that can enhance the exactness of depth estimation of an image and its processing speed is considered as the contribution factor through PCA. The experiment shows that the proposed method(30% of an feature vector) is more exact(average 0.4%, maximum 2.5%) than using all of an image data in depth estimation.

A Study on Face Image Recognition Using Feature Vectors (특징벡터를 사용한 얼굴 영상 인식 연구)

  • Kim Jin-Sook;Kang Jin-Sook;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.897-904
    • /
    • 2005
  • Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.

A Study on the Classification of Islands by PCA ( I ) (PCA에 의한 도서분류에 관한 연구( I ))

  • 이강우
    • The Journal of Fisheries Business Administration
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 1983
  • This paper considers a classification of the 88 islands located at Kyong-nam area in Korea, using by examples of 12 components of the islands. By means of principal component analysis 2 principle components were extracted, which explained a total of 73.7% of the variance. Using an eigen variable criterion (λ>1), no further principle components were discussed. Principal component 1 and 2 explained 63.4% and 10.3% of the total variance respectively, The representation of the unrelated factor scores along the first and second principal axes produced a new information with respect to the classification of the islands. Based upon the representation, 88 islands were classified into 6 groups i. e. A, B, C, D, E, and F according to similarity of the components among them in this paper. The "Group F" belongs to a miscellaneous assortment that does not fit into the logical category. category.

  • PDF

Establishment of discrimination system using multivariate analysis of FT-IR spectroscopy data from different species of artichoke (Cynara cardunculus var. scolymus L.) (FT-IR 스펙트럼 데이터 기반 다변량통계분석기법을 이용한 아티초크의 대사체 수준 품종 분류)

  • Kim, Chun Hwan;Seong, Ki-Cheol;Jung, Young Bin;Lim, Chan Kyu;Moon, Doo Gyung;Song, Seung Yeob
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.324-330
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate between artichoke (Cynara cardunculus var. scolymus L.) plants at the metabolic level, leaves of ten artichoke plants were subjected to Fourier transform infrared(FT-IR) spectroscopy. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions reflect the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). PCA revealed separate clusters that corresponded to their species relationship. Thus, PCA could be used to distinguish between artichoke species with different metabolite contents. PLS-DA showed similar species classification of artichoke. Furthermore these metabolic discrimination systems could be used for the rapid selection and classification of useful artichoke cultivars.

A Hashing Method Using PCA-based Clustering (PCA 기반 군집화를 이용한 해슁 기법)

  • Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • In hashing-based methods for approximate nearest neighbors(ANN) search, by mapping data points to k-bit binary codes, nearest neighbors are searched in a binary embedding space. In this paper, we present a hashing method using a PCA-based clustering method, Principal Direction Divisive Partitioning(PDDP). PDDP is a clustering method which repeatedly partitions the cluster with the largest variance into two clusters by using the first principal direction. The proposed hashing method utilizes the first principal direction as a projective direction for binary coding. Experimental results demonstrate that the proposed method is competitive compared with other hashing methods.

A New Focus Measure Using Principal Component Analysis (주성분 분석을 이용한 포커스 측정 기법)

  • Lee, Ik-Hyun;Mahmood, Muhammad Tariq;Choi, Tae-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1008
    • /
    • 2008
  • This paper introduces a new focus measure using Principal Component Analysis (PCA) for Shape from Focus (SFF). A neighborhood consisting of seven pixels is taken and the focus quality is computed over the whole sequence. The experimental results demonstrate effectiveness and robustness of the proposed method.

  • PDF

Optimal Thoracic Sound Data Extraction Using Principal Component Analysis (주성분 분석을 이용한 최적 흉부음 데이터 검출)

  • 임선희;박기영;최규훈;박강서;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2156-2159
    • /
    • 2003
  • Thoracic sound has been widely known as a good method to examine thoracic disease. But, it's difficult to diagnose with correct data according to patient's thoracic position from same patient who has thoracic disease. Therefore, it is necessary to normalize the data for lung sound objectively In this paper, we'd like to detect a useful data for medical examination by applying PCA(Principal Component Analysis) to thoracic sound data and then present a objective data about lung and heart sound for thoracic disease.

  • PDF