DOI QR코드

DOI QR Code

Establishment of discrimination system using multivariate analysis of FT-IR spectroscopy data from different species of artichoke (Cynara cardunculus var. scolymus L.)

FT-IR 스펙트럼 데이터 기반 다변량통계분석기법을 이용한 아티초크의 대사체 수준 품종 분류

  • Kim, Chun Hwan (Agricultural Research Institute for Climate Change, NIHHS, RDA) ;
  • Seong, Ki-Cheol (Agricultural Research Institute for Climate Change, NIHHS, RDA) ;
  • Jung, Young Bin (Agricultural Research Institute for Climate Change, NIHHS, RDA) ;
  • Lim, Chan Kyu (Agricultural Research Institute for Climate Change, NIHHS, RDA) ;
  • Moon, Doo Gyung (Agricultural Research Institute for Climate Change, NIHHS, RDA) ;
  • Song, Seung Yeob (Agricultural Research Institute for Climate Change, NIHHS, RDA)
  • 김천환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 성기철 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 정영빈 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 임찬규 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 문두경 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송승엽 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2015.10.05
  • Accepted : 2016.03.23
  • Published : 2016.04.30

Abstract

To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate between artichoke (Cynara cardunculus var. scolymus L.) plants at the metabolic level, leaves of ten artichoke plants were subjected to Fourier transform infrared(FT-IR) spectroscopy. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions reflect the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). PCA revealed separate clusters that corresponded to their species relationship. Thus, PCA could be used to distinguish between artichoke species with different metabolite contents. PLS-DA showed similar species classification of artichoke. Furthermore these metabolic discrimination systems could be used for the rapid selection and classification of useful artichoke cultivars.

본 연구는 FT-IR 스펙트럼 데이터를 기반한 다변량통계분석을 이용한 대사체 수준에서 아티초크(Cynara cardunculus var. scolymus L.) 품종 구분하였다. FT-IR 스펙트럼 데이터로부터 PCA(principal component analysis), PLS-DA(partial least square discriminant analysis) 그리고 HCA(hierarchical clustering analysis) 분석을 실시하였다. 아티초크 품종들은 1700-1500, 1500-1300, $1100-950cm^{-1}$ 부위에서 대사체의 양적, 질적 패턴 변화가 FT-IR 스펙트럼상에서 나타났다. FT-IR 스펙트럼의 $1700-1500cm^{-1}$ 부위는 주로 Amide I 과 II을 포함하는 아미노산 및 단백질계열의 화합물들의 질적, 양적 정보를 나타내고, $1700-1300cm^{-1}$ 부위는 phosphodiester group을 포함한 핵산 및 인지질의 정보가 반영이 되고, $1100-950cm^{-1}$ 부위는 단당류나 복합 다당류를 포함하는 carbohydrates 계열의 화합물들이 질적, 양적 정보가 반영되는 부위이다. PCA 상에 나타난 10품종의 아티초크들은 품종간에 중첩이 많이 이뤄지는 모습을 나타냈다. 아티초크 10개의 품종 중에서 'Cardoon'과 'Green Globe'가 계통분류학적으로 유연관계가 낮고, 서로간에 대사체 수준의 차이가 뚜렷하게 나타나는 것으로 보아 대사체 수준에서 마커 탐색에 가장 중요한 품종으로 작용할 것으로 판단된다. PLS-DA 분석의 경우 PCA 분석 보다 아티초크의 종간 식별이 뚜렷하게 나타났다. 따라서 본 연구에서 확립된 대사체 수준에서 아티초크의 품종 식별 기술은 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 기대되며 육종을 통한 품종개발 가속화에 기여 할 수 있을 것으로 예상된다.

Keywords

References

  1. Acquadro A, Portis E, Lee D, Donini P, Lanteri S (2005) Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48:217-225. doi:10.1139/g04-111
  2. Adzet T, Puigmacia M (1985) High-performance liquid chromatography of caffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatogr 348:447-452. doi:10.1016/S0021-9673(01)92486-0
  3. Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385-392. doi:10.1046/j.1365-313x.1998.00301.x
  4. D'Souza L, Devi P, Shridhar MPD, Naik CG (2008) Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in Padina Tetrastromatica (Hauck) Anal. Chem Insights 3:135-143
  5. Dumas P, Miller L (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc 32:3-21. doi:10.1016/S0924-2031(03)00043-2
  6. Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161. doi:10.1038/81137
  7. Francisco AA, Pedro GV (2003) The health and nutritional virtues of artichokes: from folklore to science. Acta Hortic 660:25-31. doi:10.17660/ActaHortic.2004.660.1
  8. Gallardo-Velazquez T, Osorio-Revilla G, Loa MZ, Rivera-Espinoza Y (2009) Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res Int 42:313-318. doi:10.1016/j.foodres.2008.11.010
  9. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157-1170. doi:10.1099/00221287-144-5-1157
  10. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246-250. doi:10.1007/s00299-004-0811-1
  11. Kim SW, Kwon YK, Seo JM, Woo TH, Liu JR (2011) Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis. J Plant Biotechnol 38:9-14. doi:10.5010/JPB.2011.38.1.009
  12. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255-265. doi:10.1093/jxb/eri010
  13. Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532-1542. doi:10.1007/s00122-006-0256-8
  14. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A (2010) Olive fruit growth and ripening as seen by vibrational spectroscopy. J Agric Food Chem 58:82-87. doi:10.1021/jf902509f
  15. Parker FS (1983) Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry. Plenum Press, NY, USA
  16. Portis E, Scaglione D, Acquadro A, Mauromicale G, Mauro R, Knapp SJ, Lanteri S (2012) Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 5:252. doi:10.1186/1756-0500-5-252
  17. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13-25. doi:10.1016/j.vibspec.2006.06.001
  18. Seong KC, Kim CH, Lee JS, Um YC, Kang KH (2008) Selection of Artichoke (Cynara scolymus L.) for Non-Heated Cultivation in Jeju Island. J Bio-Environ Control 17:293-296
  19. Song SY, Ha TJ, Jang KC, Kim IJ, Kim SW (2012) Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis. J Plant Biotechnol 39:121-126. doi:10.5010/JPB.2012.39.3.121
  20. Song SY, Jie EY, Ahn MS, Kim DJ, Kim IJ, Kim SW (2014) Discrimination of african yams containing high functional compounds using FT-IR fingerprinting combined by multivariate analysis and quantitative prediction of functional compounds by PLS regression modeling. Korean J Hortic Sci Technol 32:105-114. doi:10.7235/hort.2014.13094
  21. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J (1997) Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201:311-318. doi:10.1007/s004250050072
  22. Timmins EM, SHowell SA, Alsberg BK, Noble WC, Goodacre R (1998) Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol 36:367-374
  23. Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteomes Res 6:467-479. doi:10.1021/pr060594q
  24. Wang M, Simon JE, Aviles IF, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601-608. doi:10.1021/jf020792b
  25. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717-4721. doi:10.1128/AEM.68.10.4717-4721.2002
  26. Wold H (1966) Estimation of principal components and related models by iterative least squares. In KR Krishnaiah, ed, Multivariate Analysis. Academic Press, NY, USA, pp 391-420
  27. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carbohydr Res 339:1077-1085. doi:10.1016/j.carres.2004.01.016