• Title/Summary/Keyword: PC(Precast Concrete)

Search Result 244, Processing Time 0.022 seconds

Development of a Precast Concrete Structural Wall Adopting Improved Connections in the Plastic Hinge Region (소성힌지 영역의 접합부를 개선한 PC 구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2010
  • The purpose of this study is to develop a precast concrete structural wall system that can assure reliable seismic performance. In previous studies, the connections of precast concrete structural walls have had some problems in their seismic performance. Therefore, this research proposes precast concrete structural walls which have an improved seismic performance. One is a hybrid precast concrete structural wall that is composed of a reinforced concrete component and a precast concrete component, and another is a precast concrete wall whose reinforcements have a partially reduced section and are partially unbonded from the surrounding concrete. To evaluate the seismic performance of the proposed precast concrete structural walls, the behavior of three specimens, including a reinforced concrete wall, were subjected to reversed cyclic combined flexure and shear. According to the test results, the proposed precast concrete structural walls have reliable seismic performance.

Development of Precast Concrete Structural Wall which Can Assure Reliable Seismic Performance (내진성능이 개선된 PC구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.459-460
    • /
    • 2009
  • The purpose of this study is to develop precast concrete structural wall panel that can assure reliable seismic performance. In the previous study, the connection of precast concrete structural wall has some problems in seismic performance. Therefore, this research proposed the precast concrete structural walls which can improve seismic performance. And their seismic performance was verified through lateral loading experiment.

  • PDF

Earthquake Resistance of Beam-Column Connection of Precast Concrete U-Shaped Shell Construction (프리캐스트 콘크리트 U형 쉘 공법 보-기둥 접합부의 내진성능)

  • Im, Hyeong-Ju;Park, Hong-Gun;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.741-751
    • /
    • 2010
  • An experimental study was performed to investigate the earthquake resistance of the beam-column connections as a part of a precast concrete moment-resisting frame that uses precast concrete U-shaped shells for the beams. Five full-scale precast concrete specimens and one conventional monolithic concrete specimen were tested under cyclic loading. The parameters for this test were the reinforcement ratio, stirrup spacing, and end-strengthening details of the precast beam shell. The test results showed that regardless of the test parameters, the precast concrete beam-column connections showed good load-carrying capacity and deformation capacity, which were comparable to those of conventional monolithic concrete specimen. However, at large deformations, the beam-column connections of the precast concrete specimens were subjected to severe strength degradation due to diagonal shear cracks and the bond-slip of re-bars at the joint region. For this reason, the energy dissipation capacity and stiffness of the precast concrete specimens were significantly less than those of the cast-in-place specimen.

Absolute Comparison of Construction Periods between Precast Concrete and Reinforced Concrete Apartment Buildings (PC 및 RC공동주택 골조공사에 대한 공사기간 절대비교)

  • Kim, Ki-Ho;Lee, Bum-Sik;Kim, Jin-Won;Kim, Yeon-Ho;Lee, Dong-Gun;Sohn, Jeong-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.293-294
    • /
    • 2023
  • In accordance with recent changes in construction trends, interest in introducing the OSC, such as the Precast Concrete, is increasing in apartment buildings. In domestic studies, studies on the prediction of the construction period of PC apartment buildings through simulation have been conducted, but there is no study on the comparison of the construction period according to the actual construction of Precast Concrete(PC) and Reinforced Concrete(RC). Therefore, this study seeks to grasp the technology of the current PC construction method and to secure the original technology of project management through comparison of the absolute time of frame construction for PC and RC buildings composed of the same plane.

  • PDF

A Study on Plant Certification Program for Precast Concrete Products (프리캐스트 콘크리트 제품의 공장 인증 제도에 관한 연구)

  • Kim, Hyoung-Do;Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.131-138
    • /
    • 2014
  • The steel structure fabrication plant certification program was enacted as a part of the construction technology management act, article 24-3, to improve the quality of steel construction after the decay falling accident of Seongsu Bridge in 1994. However, the national certification program for structural precast concrete that is a prefabricated construction products produced by casting concrete in plant is not implemented yet. So, to introduce the proper certification system for precast concrete, the quality certification programs of North America, Europe and Japan are surveyed. In North America, the organizations that manage the plant certification programs are PCI, NPCA, CPCI and so on. Sales of precast concrete elements in Europe are governed by the construction products regulation 305/2011. Therefore, CE marking is mandatory from July 2013 for all construction products including precast concrete. In Japan, precast concrete products used in civil engineering are certificated by JIS mark, product certification system and plants for manufacturing precast concrete building elements are audited by Japan Prefabricated Construction Suppliers and Manufacturers Association. Based on these survey studies, in this paper is described an adaptation of precast concrete plant certification to comport with the certification system in Korea.

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Analysis on Tower Crane Selection in Precast Concretes Structures and its Connection with Precast Rate

  • Guo, Jingjing;Fu, Yan;Wang, Kang;Peng, Zhenyu
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.192-200
    • /
    • 2017
  • With the acceleration of construction industrialization, the buildings that China has adopted the construction of industrialization technology are increasing day by day, and Precast Concrete (PC) Structure technology is one of the main technologies of construction industrialization. Compared with the traditional cast-in-place concrete structure, PC structure is more conducive to shorten the construction period, reduce the number of construction workers and the site construction waste. Nevertheless, PC structure improves the requirements of hoisting machinery in the construction site, and the lay-out and selection of hoisting machinery become an important factor influencing the construction cost. The paper regards the typical tower crane in China as the research object, and establishes the time optimization model for the lifting scheme. The influence of the different precast rate on the selection of the tower crane is analyzed. This paper obtains the time variation of the tower crane under different precast rate, provides a theoretical basis for the design of precast concrete structures under the influence of assembly construction, and lays the foundation for the selection of tower crane under the precast rate.

  • PDF

Hysteretic Behavior of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 콘크리트 판구조의 이력특성에 관한 실험적 연구)

  • Seo, Soo-Yeon;Yi, Waon-Ho;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1999
  • Main objective of this study is to examine the hysteretic behaviors and to evaluate the capacity of precast concrete (PC) large panel structures simulated from the prototype of 15-story building, Two 1/2 scaled precast concrete wall specimens and one monolithic reinforced concrete specimen were designed and tested under the cyclic loading conditions. The main parameter of test specimens in PC large panel structure is the type of details for vertical continuity of vertical steel in horizontal joint. Also the behaviors of PC large panel structures are compared with that of monolithic reinforcement concrete wall structure. From the results, the stiffness and energy dissipation ratio of the precast concrete specimens are shown little bit lower than those of monolithic reinforced concrete specimen. In the PC large panel structures, the specimen connected vertically by welding (strong connection) showed higher strength than that of the specimen connected vertically by joint box. However the failure pattern of the former showed more brittle than that of the latter due to the diagonal compressive failure of wall panels.

  • PDF

A Study on the Consideration for Factors Affecting Production Plan Establishment of Precast Concrete Members (PC부재의 생산계획 수립에 영향을 미치는 요인 고찰에 관한 연구)

  • Jun, Young-Hun;Shin, Eun-Young;Yun, Won-Gun;Kim, Kyong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.253-254
    • /
    • 2023
  • The production plan of Precast Concrete members is closely related to the assembly plan of Precast Concrete members, and is an important management factor for the process planning of Precast Concrete construction. This may cause a delay in the construction period due to manufacturing errors occurring in the production process of members and transportation errors according to the production sequence. Therefore, it is necessary to have an efficient production plan for Precast Concrete members that can produce the necessary quantity from the point of assembly of the members and supply them in a timely manner. This study is a basic study for establishing a production plan for Precast Concrete members, and the purpose of the study is to examine the factors that affect the establishment of a production plan for Precast Concrete members. In this study, the influencing factors according to the production method and conditions when establishing a production plan for Precast Concrete members were considered. In the future, correlation analysis among influencing factors will be carried out, and it is expected that it will be used as basic data for schedule management of Precast Concrete construction and derivation of construction period calculation standards.

  • PDF

An Experimental Study on the Design-Concrete for Precast Concrete (문양 콘크리트의 프리캐스트화를 위한 실험적 연구)

  • Kim Jae-Eun;Gong Min Ho;Kim Kwang Ki;Cho Sang-Young;Jung Jae Young;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.11-14
    • /
    • 2004
  • The object of this study is vibrating compaction and curing method in the production process of Design concrete for precast concrete(Design-PC) product. From change of vibrating compaction time and pre-curing time. curing temperature which would be factors of product quality in Design-PC concrete production. and research of optimized steam curing condition from relations between curing condition and strength development. basic data of vibrating compaction time and concrete steam curing method for Design-PC will be presented.

  • PDF