• Title/Summary/Keyword: PARP cleavage

Search Result 264, Processing Time 0.022 seconds

Protective Effects of Phenolic-rich Fraction(PRF) from Fructus Schisandrae on $H_2O_2-induced$ Apoptosis of SH-SY5Y Cells

  • Son, In-Hwan;Lee, Key-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.230-241
    • /
    • 2007
  • Objective : This study was intended to ascertain the protective effect of phenolic-rich fraction (PRF) from Fructus Schisandrae on SH-SY5Y cells. Methods : PRF was obtained from the 80% ethanol extract of Fructus Schisandrae by Sepabeads SP-850 column chromatography. The neuroprotective effect of the FS PRS was investigated due to the hydrogen peroxide $(H_2O_2)-induced$ apoptosis of cultured SH-SY5Y cells. Results : Cell viability assays revealed that pretreating SH-SY5Y cells with PRF (10-200 ${\mu}g/mL$) resulted in significant dose-dependent protection against $H_2O_2-induced$ cell death. The effect was assessed by flow cytometric analysis of DNA contents using propidium iodide (PI) staining. The population of apoptotic cells was increased by 32.89% in only $H_2O_2$ (150 ${\mu}M$)-treated environment, but it was reduced by pre-treatment of FS PRF (200 ${\mu}g/mL$) to 21.61%. $H_2O_2-induced$ caspase-3 activation and PARP cleavage were reduced in FS PRF pre-treated cells, and PRF led to an apparent suppressive effect on the oxidative stress induced by reactive oxygen species (ROS). Conculsion : This study showed that Fructus Schisandrae should be useful for the treatment prevention of neurodegenerative diseases associated with elevated ROS levels.

  • PDF

Influence of Rubiae Radix Extract on the Mechanism of Apoptosis in HL-60 Cells (천초근 추출물이 HL-60 세포주의 세포자멸사 기전에 미치는 영향)

  • Choi, Ho-Seung;Park, Jin-Mo;Ju, Sung-Min;Kim, Sung-Hoon;Kim, Dae-Keun;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.548-555
    • /
    • 2008
  • Rubiae radix belonging to the family Rubiaceae have been used in traditional medicine to blood stasis and hemostasis. In this study, we reported that methanol extract of Rubiae radix (RRME) induced apoptotic cell death through MAPKs activation in human promylocytic leukemia (HL-60) cells. The cytotoxic activity of activity of RRME in HL-60 cells was increased in a dose-dependent manner. RRME was cytotoxic to HL-60 cells, with IC50 of $8{\mu}g/mL$. Treatment of RRME to HL-60 cells showed apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Caspase-3 activity and PARP cleavage were time-dependently increased the expression of Bcl-2 and Bax. And ratio of Bax/Bcl-2 protein expression. Activation of p38 and JNK were increased 6 hr after RRME treatment in HL-60 cells, but activation of ERK was reduced 24 hr after treatment. Taken together, these results suggest that RRME induces apoptotic cell death through activation of p38 and JNK in HL-60 cells.

Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells

  • Seo, Jeongbin;Jung, Juneyoung;Jang, Dae Sik;Kim, Joungmok;Kim, Jeong Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.618-624
    • /
    • 2017
  • Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with $IC_{50}$ of approximately $2.0{\mu}M$. Treatment of BA resulted in a dose-dependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

Protective Effects of Hyperoside from Juglans sinensis Leaves against 1-methyl-4-phenylpyridinium-Induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 호두나무잎에서 분리된 Hyperoside의 보호 효과)

  • Pariyar, Ramesh;Svay, Thida;Seo, Jungwon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • Parkinson's disease (PD), one of common neurodegenerative diseases, is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. The loss of dopaminergic neurons in PD is associated with oxidative stress and mitochondrial dysfunction. Hyperoside (quercetin 3-O-${\beta}$-D-galactopyranoside) was reported to have protective properties against oxidative stress by reducing intracellular reactive oxygen species (ROS) and increasing antioxidant enzyme activity. In this study, we examined the neuroprotective effect of hyperoside against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced cell model of PD and the underlying molecular mechanisms. Hyperoside significantly decreased $MPP^+$-induced cell death, accompanied by a reduction in poly ADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular ROS and disruption of mitochondrial membrane potential (MMP), with the reduction of Bax/Bcl-2 ratio. Moreover, hyperoside significantly increased the phosphorylation of Akt, but it has no effects on $GSK3{\beta}$ and MAPKs. Pharmacological inhibitor of PI3K/Akt abolished the cytoprotective effects of hyperoside against $MPP^+$. Taken together, these results demonstrate that hyperoside significantly attenuates $MPP^+$-induced neurotoxicity through PI3K/Akt signaling pathways in SH-SY5Y cells. Our findings suggest that hyperoside might be one of the potential candidates for the treatment of PD.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Growth Inhibition of Uterine Leiomyoma Cells Using Rhubarb (대황이 자궁상종세포의 세포자멸사에 미치는 영향)

  • Yang Young Phil;Kim Hyun Tae;Kim Sang Chan;Baek Seung Hee;Kim Mi Rye;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.200-205
    • /
    • 2004
  • Uterine leiomyoma is the most common tumor in the female genital tract. Although the tumor is benign, it is of paramount importance since it often causes profuse menstrual bleeding, pressure symptoms, and infertility. Nevertheless, the etiology and patholphysiology of this abnormality remain poorly understood. The traditional definitive treatment for uterine leiomyomas is hysterectomy and, even today, symptomatic leiomyomas are the leading cause of hysterectomy in Korea. Clearly, the development of a safe, effective, and nonsurgical method of treatment for leiomyoma would be of great benefit to many women. The present study was designed to investigate the effect of Rhubarb on apoptosis in uterine leiomyoma cells. Results demonstrate that Rhubarb inhibited cell growth in dose-dependent manner. Cell growth significantly decreased to 60% of control in the treatment of Rhubarb (300㎍/㎖). Associated with the decreased response, there was a concomitant and significant delay of subG1 8.32% above baseline in the treatment of Rhubarb (300㎍/㎖). The delay of subG1 showed a dose-dependent manner, as evidenced by the flow cytometry. The reduced cellular viability on exposure to Rhubarb may represent the induction of apoptosis, at least in part, as concomitantly evidenced by enhanced DNA fragmentation, PARP cleavage and caspase 9 and decreased pro-caspase 3. In addition, Rhubarb decreased clAP1 expression levels in dose-dependent manner. Talcen together, there results suggest that Rhubarb can produce a potent inhibition effect of apoptosis and implicate the delay of G1 phase in the cell cycle and pathways of caspase 3 and 9 in the mechanism underlying inhibitory apoptosis effect of Rhubarb.

In vitro Cytotoxicity and Apoptotic Effect of Chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4- tetrahydroisoquinoline on HL-60 Cells

  • Kim, Kun-Jung;Ju, Sung-Min;Kim, Myung-Wan;Lee, Chai-Ho;Kim, Won-Sin;Yun, Young-Gab;Yun, Yoo-Sik;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.772-778
    • /
    • 2005
  • The chloromethyl-2-dihydroxyphosphinyl-6,7-dimethoxy-1,2,3,4-tetrahydro- isoquinoline (CDDT) is a newly synthesized derivative from 1,2,3,4-Tetra- hydroisoquinoline (THIQ). The THIQs include potent cytotoxic agents that display a range of antitumor activities, antimicrobial activity, and other biological properties. In this study, we investigated the effect of CDDT on the cytotoxicity, induction of apoptosis in human promyelocytic leukemia cells (HL-60 cells). CDDT showed a significant cytotoxic activity in HL-60 cells ($IC_{50}$ = approximately $37\;{\mu}g/ml$) at a 24 hr incubation. Treatment of HL-60 cells with CDDT displayed several features of apoptosis, including formation of DNA ladders in agarose gel electrophoresis, morphological changes of HL-60 cells with DAPI stain. Here we observed that CDDT caused activation of caspase-3, caspase-8, and caspase-9. The most efficacious time on the activation of caspases-3 was achieved at 12 hr. Further molecular analysis demonstrated that CDDT led to cleavage of poly(ADP-ribose) polymerase (PARP), increase of hypodiploid (Sub-G1) population in the flow cytometric analysis. In conclusion, these above results indicate that CDDT dramatically suppresses HL-60 cell growth by activation of caspase-3 with caspase-8, -9 activity. These data may support a pivotal mechanism for the use of CDDT in the prevention and treatment of leukemia.

Effect of Batryticatus Bombycis Extract on Apoptosis in B16F10 cells (백강잠 추출액의 피부암 세포주에서 세포사멸 유도 작용에 대한 연구)

  • Kwen, Il-Ho;Du, In-Sun;Park, Min-Chul;Hwang, Chung-Yeon;Kim, Nam-Kwen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.765-771
    • /
    • 2005
  • This study was performed to investigate the anti cancer effect of Batryticatus Bombycis extract(BBE) in B16F10 cells. The cell viability after BBE treatment was quantified by MTT assay. The results showed that BBE inhibited the proliferation of B16F10 cells and caused a 80% inhibition of B16F10 cells at concentration of $500\;{\mu}g/ml$. B16F10 cells exposed to BBE displayed the DNA fragmentation ladder and nucleus chromatin condensation characteristic for apoptosis. The enzyme activity of caspase-3 and actived caspase-3 protein was markedly increased in B16F10 cells treated with the BBE. The expression of Bcl-2, anti-apoptotic protein, was decreased by treatment of the BBE in a dose-dependent manner. And the expression of pro-apoptotic Bax protein was increased. In conclusion, we can suggest that BBE induce the apoptotic death of B16F10 cells via activation of caspase-3, cleavage of PARP protein and Bcl-2 degradation.

Hepatoprotective Activity of Crataegii Fructus Water Extract against Cadmium-induced Toxicity in Rats (카드뮴유발 흰쥐의 간손상에 대한 산사(山査)추출물의 보호효과)

  • Shin, Jeong-Hun;Jo, Mi-Jeong;Park, Sang-Mi;Park, Sook-Jahr;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.249-257
    • /
    • 2010
  • Crataegii Fructus is commonly used as a improving digestion, removing retention of food, promoting blood circulation and resolving blood stasis agent in East Asia. Cadmium (Cd) is widely distributed in the environment due to its use in industry. An exposure to Cd causes dysuria, polyuria, chest pain, hepatic and renal tubular diseases. The liver is the most important target organ when considering Cd-induced toxicity because Cd primarily accumulates in the liver. This study investigated the protective effect of Crataegii Fructus water extract against cadmium ($CdCl_2$, Cd)-induced liver toxicity in H4IIE cells, a rat hepatocyte-derived cell line and in rats. Cell viability was significantly reduced in Cd-treated H4IIE cells in a time and concentration-dependent manner. However, Crataegii Fructus water extract (CFE) protected the cells from Cd-induced cytotoxicity via inhibition of PARP cleavage. To induce acute toxicity in rats, Cd (4 mg/kg body weight) was dissolved in normal saline and intravenously injected into rats. The rats then received either a vehicle or silymarin (as a positive control) or CFE (50, 100 mg/kg/day) for 3 days, and were subsequently exposed to a single injection of Cd. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were significantly increased by Cd treatment. In contrast, pretreatment with CFE reduced ALT, AST and LDH. In histopathological analysis, CFE reduced the hepatic degenerative regions and the number of degenerative hepatocytes. These are considered as direct evidences that Crataegii Fructus has favorable inhibitory effects on the Cd-intoxicated liver damages. The efficacy of Crataegii Fructus shows slight lower than that of silymarin in the present study.

Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells (Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구)

  • 오경재;염정호
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • Cadmium is an ubiquitous toxic metal and chronic exposure to cadmium results in the accumulation of cadmium in the liver and kidneys. In contrast, acute exposure leads to damage mainly in the liver. Apoptosis induced by cadmium has been shown in many tissues in vivo and in cultured cells in vitro. However, the molecular mechanism of cadmium-induced apoptosis is not clear in hepatocyte. To investigate the induction of apoptosis in the hepatocyte, we used mouse hepatoma cell line, Hepalclc7 cells, and analysed the molecules that involved in cadmium-induced apoptosis. Cadmium induced the genomic DNA fragmentation, PARP cleavage, and activation of caspase-3 like protease. Caspase-9 cysteine protease was activated in a time-dependent manner but caspase-8 cysteine protease was not significantly activated in cadmium-treated Hepalclc7 cells. Cadmium also induced mitochondrial dysfunction including cytochrome c release from mitochondria, change oj mitochondrial membrane potential tranition, and tranlocation of Bax Protein into mitochondria. These results strong1y indicated that the signal Pathway of apoptotic death in cadmium-treated Hepalclc7 cells is modulated by caspase cascade via mitochondria.

  • PDF