DOI QR코드

DOI QR Code

Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells

  • Seo, Jeongbin (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Jung, Juneyoung (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Jang, Dae Sik (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kim, Joungmok (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University) ;
  • Kim, Jeong Hee (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2016.11.15
  • Accepted : 2016.12.27
  • Published : 2017.11.01

Abstract

Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with $IC_{50}$ of approximately $2.0{\mu}M$. Treatment of BA resulted in a dose-dependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

Keywords

References

  1. Arends, M. J., Morris, R. G. and Wyllie A. H. (1990) Apoptosis. The role of the endonuclease. Am. J. Pathol. 136, 593-608.
  2. Baehrecke, E. H. (2005) Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell Biol. 6, 505-510.
  3. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  4. Butler, M. S. (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25, 475-516. https://doi.org/10.1039/b514294f
  5. Chen, C. M., Wu, C. T., Yang, T. H., Chang, Y. A., Sheu, M. L. and Liu, S. H. (2016) Green tea catechin prevents hypoxia/reperfusion-evoked oxidative stress-regulated autophagy-activated apoptosis and cell death in microglial cells. J. Agric. Food. Chem. 64, 4078-4085. https://doi.org/10.1021/acs.jafc.6b01513
  6. Choi, D. K., Koppula, S. and Suk, K. (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16, 1021-1043. https://doi.org/10.3390/molecules16021021
  7. Foo, J. B., Saiful Yazan, L., Tor, Y. S., Wibowo, A., Ismail, N., How, C. W., Armania, N., Loh, S. P., Ismail, I. S., Cheah, Y. K. and Abdullah, R. (2015) Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dilleniasuffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. J. Ethnopharmacol. 166, 270-278. https://doi.org/10.1016/j.jep.2015.03.039
  8. Gao, H. M. and Hong, J. S. (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29, 357-365. https://doi.org/10.1016/j.it.2008.05.002
  9. Gu, Y., Chen, J. and Shen, J. (2014) Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J. Neuroimmune Pharmacol. 9, 313-339. https://doi.org/10.1007/s11481-014-9525-5
  10. Hao, F., Zhang, N. N., Zhang, D. M., Bai, H. Y., Piao, H., Yuan, B., Zhu, H. Y., Yu, H., Xiao, C. S. and Li, A. P. (2013) Chemokine fractalkine attenuates overactivation and apoptosis of BV-2 microglial cells induced by extracellular ATP. Neurochem. Res. 38, 1002-1012. https://doi.org/10.1007/s11064-013-1010-7
  11. Hornik, T. C., Vilalta, A. and Brown, G. C. (2016) Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci. 129, 65-79. https://doi.org/10.1242/jcs.174631
  12. Hong, J. (2011) Natural product diversity and its role in chemical biology and drug discovery. Curr. Opin. Chem. Biol. 15, 350-354. https://doi.org/10.1016/j.cbpa.2011.03.004
  13. Hyun, S. J., Yoon, M. Y., Kim, T. H. and Kim, J. H. (1997) Enhancement of mitogen-stimulated proliferation of low dose radiation-adapted mouse splenocytes. Anticancer Res. 17, 225-229.
  14. Khan, I., Guru, S. K., Rath, S. K., Chinthakindi, P. K., Singh, B., Koul, S., Bhushan, S. and Sangwan, P. L. (2016) A novel triazole derivative of betulinic acid induces extrinsic and intrinsic apoptosis in human leukemia HL-60 cells. Eur. J. Med. Chem. 108, 104-116. https://doi.org/10.1016/j.ejmech.2015.11.018
  15. Kim, K. S., Lee, D. S., Kim, D. C., Yoon, C. S., Ko, W., Oh, H. and Kim, Y. C. (2016) Anti-inflammatory effects and mechanisms of action of coussaric and betulinic acids isolated from Diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules 21, 1206. https://doi.org/10.3390/molecules21091206
  16. Kim, J., Kim, Y. C., Fang, C., Russell, R. C., Kim, J. H., Fan, W., Liu, R., Zhong, Q. and Guan, K. L. (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303. https://doi.org/10.1016/j.cell.2012.12.016
  17. Kwon, O. W., Moon, E., Chari, M. A., Kim, T. W., Kim, A. J., Lee, P., Ahn, K. H. and Kim, S. Y. (2012) A substituted 3,4-dihydropyrimidinone derivative (compound D22) prevents inflammation mediated neurotoxicity; role in microglial activation in BV-2 cells. Bioorg. Med. Chem. Lett. 22, 5199-5203. https://doi.org/10.1016/j.bmcl.2012.06.082
  18. Lee, D. S. and Jeong, G. S. (2014) Arylbenzofuran isolated from Dalbergiaodorifera suppresses lipopolysaccharide-induced mouse BV2 microglial cell activation, which protects mouse hippocampal HT22 cells death from neuroinflammation-mediated toxicity. Eur. J. Pharmacol. 728, 1-8. https://doi.org/10.1016/j.ejphar.2013.12.041
  19. Levine, B. and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018
  20. Li, Y., He, K., Huang, Y., Zheng, D., Gao, C., Cui, L. and Jin, Y. H. (2010) Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol. Carcinog. 49, 630-640.
  21. Li, Z., Hu, H., Lin, R., Mao, J., Zhu, X., Hong, Z., Tao, J., Zhang, Y. and Chen, L. (2014) Neuroprotective effects of Gua Lou GuiZhi decoction against glutamate-induced apoptosis in BV-2 cells. Int. J. Mol. Med. 33, 597-604. https://doi.org/10.3892/ijmm.2013.1612
  22. Liu, J., Huang, D., Xu, J., Tong, J., Wang, Z., Huang, L., Yang, Y., Bai, X., Wang, P., Suo, H., Ma, Y., Yu, M., Fei, J. and Huang, F. (2015a) Tiagabine protects dopaminergic neurons against neurotoxins by inhibiting microglial activation. Sci. Rep. 5, 15720. https://doi.org/10.1038/srep15720
  23. Liu, Z., Song, G., Zou, C., Liu, G., Wu, W., Yuan, T. and Liu, X. (2015b) Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radic. Biol. Med. 84, 42-53. https://doi.org/10.1016/j.freeradbiomed.2015.03.013
  24. Loane, D. J., Stoica, B. A., Pajoohesh-Ganji, A., Byrnes, K. R. and Faden, A. I. (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem. 284, 15629-15639. https://doi.org/10.1074/jbc.M806139200
  25. McLeland, C. B., Rodriguez, J. and Stern, S. T. (2011) Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot. Methods Mol. Biol. 697, 199-206.
  26. Meira, C. S., Barbosa-Filho, J. M., Lanfredi-Rangel, A., Guimarães, E. T., Moreira, D. R. and Soares, M. B. (2016) Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Exp. Parasitol. 166, 108-115. https://doi.org/10.1016/j.exppara.2016.04.007
  27. Mizushima, N. and Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
  28. Mizushima, N. and Yoshimori, T. (2007) How to interpret LC3 immunoblotting. Autophagy 3, 542-545. https://doi.org/10.4161/auto.4600
  29. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  30. Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y. and Nakatogawa, H. (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362. https://doi.org/10.1038/nature14506
  31. Mukhopadhyay, S., Panda, P. K., Sinha, N., Das, D. N. and Bhutia, S. K. (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19, 555-566. https://doi.org/10.1007/s10495-014-0967-2
  32. Mukhtar, E., Adhami, V. M., Khan, N. and Mukhtar, H. (2012) Apoptosis and autophagy induction as mechanism of cancer prevention by naturally occurring dietary agents. Curr. Drug Targets 13, 1831-1841. https://doi.org/10.2174/138945012804545489
  33. Oltvai, Z. N. and Korsmeyer, S. J. (1994) Checkpoints of dueling dimers foil death wishes. Cell 79, 189-192. https://doi.org/10.1016/0092-8674(94)90188-0
  34. Periasamy, G., Teketelew, G., Gebrelibanos, M., Sintayehu, B., Gebrehiwot, M., Karim, A. and Geremedhin, G. (2014) Betulinic acid and its derivatives as anti-cancer agent: a review. Arch. Appl. Sci. Res. 6, 47-58.
  35. Reed, J. C. (1998) Bcl-2 family proteins. Oncogene 17, 3225-3226. https://doi.org/10.1038/sj.onc.1202591
  36. Rodrigues, T., Reker, D., Schneider, P. and Schneider, G. (2016) Counting on natural products for drug design. Nat. Chem. 8, 531-541. https://doi.org/10.1038/nchem.2479
  37. Rosén, J., Gottfries, J., Muresan, S., Backlund, A. and Oprea, T. (2009) Novel chemical space exploration via natural products. J. Med. Chem. 52, 1953-1962. https://doi.org/10.1021/jm801514w
  38. Saijo, K. and Glass, C. K. (2011) Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11, 775-787. https://doi.org/10.1038/nri3086
  39. Sami, A., Taru, M., Salme, K. and Jari, Y. -K. (2006) Pharmavological properties of the ubiquitous natural prduct betulin. Eur. J. Pharm. Sci. 29, 1-13. https://doi.org/10.1016/j.ejps.2006.04.006
  40. Stoica, B. A., Loane, D. J., Zhao, Z., Kabadi, S. V., Hanscom, M., Byrnes, K. R. and Faden, A. I. (2014) PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J. Neurotrauma. 31, 758-772. https://doi.org/10.1089/neu.2013.3194
  41. Su, P., Zhang, J., Wang, D., Zhao, F., Cao, Z., Aschner, M. and Luo, W. (2016) The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 319, 155-167. https://doi.org/10.1016/j.neuroscience.2016.01.035
  42. Tanida, I., Ueno, T. and Kominami, E. (2008) LC3 and autophagy. Methods Mol. Biol. 445, 77-88.
  43. Vogel, P., Dux, E. and Wiessner, C. (1997) Evidence of apoptosis in primary neuronal cultures after heat shock. Brain Res. 764, 205-213. https://doi.org/10.1016/S0006-8993(97)00458-7
  44. Wang, C., Xie, N., Zhang, H., Li, Y. and Wang, Y. (2014) Puerarin protects against ${\beta}$-amyloid-induced microglia apoptosis via a PI3K-dependent signaling pathway. Neurochem. Res. 39, 2189-2196. https://doi.org/10.1007/s11064-014-1420-1
  45. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556. https://doi.org/10.1038/284555a0
  46. Yang, N. C., Jeng, K. C., Ho, W. M., Chou, S. J. and Hu, M. L. (2000) DHEA inhibits cell growth and induces apoptosis in BV-2 cells and the effects are inversely associated with glucose concentration in the medium. J. Steroid Biochem. Mol. Biol. 75, 159-166. https://doi.org/10.1016/S0960-0760(00)00180-1
  47. Yogeeswari, P. and Sriram, D. (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr. Med. Chem. 12, 657-666. https://doi.org/10.2174/0929867053202214
  48. Yu, D. S., Lv, G., Mei, X. F., Cao, Y., Wang, Y. F., Wang, Y. S. and Bi, Y. L. (2015) MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1. Spinal Cord 53, 182-189. https://doi.org/10.1038/sc.2014.185
  49. Zhang, X., Hu, J. and Chen, Y. (2016) Betulinic acid and the pharmacological effects of tumor suppression (review). Mol. Med. Rep. 14, 4489-4495. https://doi.org/10.3892/mmr.2016.5792

Cited by

  1. Betulinic acid attenuates liver fibrosis by inducing autophagy via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway pp.1861-0293, 2018, https://doi.org/10.1007/s11418-018-1262-2
  2. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog vol.10, pp.3, 2017, https://doi.org/10.1038/s41419-019-1470-z
  3. Stimulatory Effects of Oleci Acid and Fungal Elicitor on Betulinic Acid Production by Submerged Cultivation of Medicinal Mushroom Inonotus obliquus vol.7, pp.4, 2017, https://doi.org/10.3390/jof7040266
  4. Anti-Cancer and Immunomodulatory Activity of a Polyethylene Glycol-Betulinic Acid Conjugate on Pancreatic Cancer Cells vol.11, pp.6, 2017, https://doi.org/10.3390/life11060462
  5. Acankoreagenin and acankoreosides, a family of lupane triterpenoids with anti‐inflammatory properties: an overview vol.1502, pp.1, 2017, https://doi.org/10.1111/nyas.14623